Singapore International Mathematical Olympiad 2008 Senior Team Training

Take Home Test

Submit written solutions by 12 April 2008.

- (1) Show that the equation $15x^2 7y^2 = 9$ has no solution in integers.
- (2) Let n and k be positive integers. Prove that

$$(n^4-1)(n^3-n^2+n-1)^k+(n+1)n^{4k-1}$$

is divisible by $n^5 + 1$.

(3) Let

$$f(x) = (x+1)^p (x-3)^q$$

= $x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$,

where p and q are positive integers.

- (a) Given that $a_1 = a_2$, prove that 3n is a perfect square.
- (b) Prove that there exist infinitely many pairs (p,q) of positive integers p and q such that the equality $a_1 = a_2$ is valid for the polynomial p(x).
- (4) Show that if m < n, then $2^{2^m} + 1$ divides $2^{2^n} 1$. Hence deduce that $2^{2^m} + 1$ and $2^{2^n} + 1$ are relatively prime. Conclude that there are infinitely many primes.
- (5) Let x, y, z be positive numbers so that xyz = 1. Prove that

$$x+y+z \geq \sqrt[3]{\frac{z}{x}} + \sqrt[3]{\frac{x}{y}} + \sqrt[3]{\frac{y}{z}}.$$

(6) Let p_1, p_2, \ldots, p_n $(n \ge 2)$ be any rearrangement of $1, 2, \ldots n$. Show that

$$\frac{1}{p_1+p_2}+\frac{1}{p_2+p_3}+\cdots+\frac{1}{p_{n-1}+p_n}>\frac{n-1}{n+2}.$$

(7) From a point P outside a circle, tangent lines PA and PB are drawn with A and B on the circle. A third line PCD meets the circle at C and D, with C lying in between P and D. A point Q is chosen on the chord CD so that $\angle DAQ = \angle PBC$. Show that $\angle DBQ = \angle PAC$.

(8) In triangle ABC, $\angle A=60^\circ$ and AB>AC. The altitudes BE and CF intersect at H. Points M and N are chosen on the segments BH and HF so that BM=CN. If O is the circumcircle of ABC, find the ratio

 $\frac{MH+NH}{OH}.$

- (9) On the plane, there are 3 mutually and externally disjoint circles Γ_1, Γ_2 and Γ_3 centred at X_1, X_2 and X_3 respectively. The two internal common tangents of Γ_2 and Γ_3 , (Γ_3 and Γ_1 , Γ_1 and Γ_2) meet at P, (Q, R respectively). Prove that X_1P, X_2Q and X_3R are concurrent.
- (10) The excircle centred at I_a with respect to $\angle A$ of $\triangle ABC$ touches the sides AB, BC and AC or their extensions at E, D and F respectively. Let H be the foot of the perpendicular from B onto I_aC . Prove that E, H, F are collinear.