[CWMO 2011 question 4.] In a circle Γ_1 centred at O, AB and CD are two unequal chords intersecting at E inside Γ_1 . A circle Γ_2 centred at I is tangent to Γ_1 internally at F, and also tangent to AB at G and CD at H. A line ℓ through O intersecting AB and CD at P and Q respectively such that EP = EQ. The line EF intersects ℓ at M. Prove that the line through M parallel to AB is tangent to Γ_1 .

Solution. Let the extensions of FG and FH meet the circle Γ_1 at G' and H' respectively. Let h be the homothety cnetred at F mapping Γ_2 to Γ_1 . Then h(I) = O, h(G) = G' and h(H) = H'. As the tangent α to Γ_1 at G' is parallel to AB. it suffices to show α , ℓ and EF are concurrent at M.

Note that $\angle EPQ = \angle PQE = \angle GEI = \angle HEI$ so that IE is parallel OM. Since h(I) = O, we have h(E) = M. Then under the homothety h, the line AB goes to α , the line EF goes back to EF and the line IE goes to ℓ . Since lines AB, EF and IE concur at E, the lines α , EF and ℓ concur at M.

