52nd INTERNATIONAL MATHEMATICAL OLYMPIAD AMSTERDAM (THE NETHERLANDS), JULY 12-24, 2011

Monday, July 18, 2011

Problem 1. Given any set $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ of four distinct positive integers, we denote the sum $a_{1}+a_{2}+a_{3}+a_{4}$ by s_{A}. Let n_{A} denote the number of pairs (i, j) with $1 \leq i<j \leq 4$ for which $a_{i}+a_{j}$ divides s_{A}. Find all sets A of four distinct positive integers which achieve the largest possible value of n_{A}.

Problem 2. Let \mathcal{S} be a finite set of at least two points in the plane. Assume that no three points of \mathcal{S} are collinear. A windmill is a process that starts with a line ℓ going through a single point $P \in \mathcal{S}$. The line rotates clockwise about the pivot P until the first time that the line meets some other point belonging to \mathcal{S}. This point, Q, takes over as the new pivot, and the line now rotates clockwise about Q, until it next meets a point of \mathcal{S}. This process continues indefinitely.
Show that we can choose a point P in \mathcal{S} and a line ℓ going through P such that the resulting windmill uses each point of \mathcal{S} as a pivot infinitely many times.

Problem 3. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a real-valued function on the set of real numbers that satisfies

$$
f(x+y) \leq y f(x)+f(f(x))
$$

for all real numbers x and y. Prove that $f(x)=0$ for all $x \leq 0$.

