33th International Mathematical Olympiad

Russia, July 1992.

1. Find all integers a, b, c with 1 < a < b < ¢ such that (a —1)(b—1(¢— 1) is a divisor of
abc — 1.

Soln. Write x =a—1,y=b—1 and z = ¢ — 1. The problem is equivalent to: Find all
integers z,y, z with 0 < x < y < z such that zyz is a divisor of zyz+ry+yz+zrz+r+y+=2.
Let R(z,y,2) = (xyz + 2y +yz + 2z + x + y + z)/(zyz). Since R(z,y,z) is an integer,
x,1, z are either all even or all odd. Also

If x > 3, then
1< R(z,y,2) < R(3,5,7) <2

which is impossible. If x = 2, then
1< R(z,y,2) < R(2,4,6) < 3
and so R(2,y,z) = 2. This implies
(y—3)(z—3) =11

which gives y = 4,z = 14.

If x =1, then
1< R(z,y,2) < R(1,3,5) < 4.

If R(1,z,y) = 2, then 2y + 2z + 1 = 0 which is impossible. If R(1,z,y) = 3, then
(y —2)(z —2) =5.
Thus y = 3,z = 7. So there are two possible solutions
(a,b,c) = (3,5,15),(2,4,8).

It is easy to check that both are indeed solutions.

2. Let R denote the set of all real numbers. Find all functions f : R — R such that

fl@®+ f(y)) =y + f(x)* forall z,yeR. (1)

Soln. Let f(0) = s and put x =0 in (1),
f(f(y)) =y+s* forall yeR. (2)
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Put y =01in (1),

f(z? 4 5) = f(x)? forall zeR. (3)

Put 2 =0 in (3),
f(s) =5’ (4)

Add (3) and (4),
s+ f(z? +5) = f(x)? + f(s) forall yeR. (5)

Apply f to both sides and use (2), (3), (4),
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?4s+st=s+(x+s%)? forall zcR

This gives f(0) = s = 0. Thus, from (2), (3),

Thus
f(z)>0 forall z>0. (7)

Replace y by f)y) and = by \/x, we have

flx+y) = f(x)+ f(y) forall x>0,yeR. (])

Now if = > y, then

f@)=f(x—y)+y)=flx—y)+ fly) > f(y)

x)) > f(x), a contradiction.

Suppose there exists = such that f(z) > =z, then x = f(f(
f(y)) < f(y), again impossible.

Suppose there exists y such that f(y) < y, then y = f(
Thus f(x) = x for all . This is indeed a solution.

3. Consider nine points in sapce, no four of which are coplanar. Each pair of points is
joined by an edge (that is, a line segment) and each edge is either coloured blue or red
or left uncoloured. Find the smallest value of n such that whenever exactly n edges are
coloured the set of coloured edges necessarily contains a triangle all of whose edges have
the same colour.

Soln. If three edges are not coloured, then the three edges are either idependent, form a
triaangle, form a path or form a star. In each case, the coloured edges contained a K¢. Thus
there is a monochromatic triangle. If there are uncloured edges, then the following example
shows that it is possibld that there are no monochromatic triangles. Label the vertices
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a;,b;, i =1,2,3,4 and x. Leave the edges aias, asay, b1bs, boby uncoloured. Coloured the
following edges red:

ra;, 1=1,2,3,4
b1b3, b1b4, b2b3, baby,
a1b1,a1be, azb1, azbo,
asbs, azby, asbs, asby.

The remaining edges are coloured blue.

4. In the plane let C' be a circle, L a line tangent to the circle and M a point on L. Find
the locus of all points P with the folloiwng property:

there exist two points (), R on L such that M is hte midpoint of QR and C' is
the incribed circle of triangle PQR.

Soln. Consider any triangle ABC with incircle I" and excircle I which touches the side
BC externally. If X and Y are the points of where BC' touches the incircle and excircle,
respecitvely. We have the following:

(1) CY = BX = s — AC, where s is the semiperimater of ABC. This follows from
the fact that AB+ BY = AC + CY and AB+ BY + AC + CX = 2s. (2) It follows from
(1) that the midpoint of BC' and XY are the same.

(2) If XZ is a diameter of the incircle, then the homothety with centre A that takes
the incircle to the excircle takes Z to Y.

Now we solve the problem: Let X be the point where L touches the circle C' and X Z
be a diameter of C. Also let Y be the point on L which is symmetric to X with respect
to M. We claim that the locus is the open ray on the line Y Z emanating away from the
circle.

If P is point with the desired property, then the homothety with centre at P taking
the incircle C' of PQR to its excircle takes Z to Y. Thus P lies on the open ray.

Conversely, any point on the open ray has the desired property.

5. Let S be a finite set of points in three-dimensional space. Let S, Sy, S, be the sets
consisting of the orthogonal projections of the points of S onto the yz-plane, zz-plane,
ry-plane respectively. Prove that

[S1* < 184115y l1S:]

where |A| denotes the number of elements in the finite set set A. (Note: the orthogonal
projection of a point onto a plane is the foot of the perpendicular from the point to the
plane).

Soln. For each (4, ) let S;; be the set of points of the type (x,1,j), i.e., the set of points
that project to (7,7). Then
S = UG.jes. Sij-
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By Cauchy’s inequality,

1Sal D> 183517 =[S

Let X = U(i’j)eszsij XSij. Then |X| = Z(i,j)esz |SZ]|2 The map f X — Sy X Sz defined
by f((z,4,7),(2',1,7)) = ((z,9), (x, j)) is certainly injective. So | X| < |S,||S:].

Second soln. First we assume that all the points of S' lie on a plane prallel to the xzy-plane.
In this case, we have |S;||S,| > |S|?. But |S.| > 1 so the result holds.

So we assume that the result holds for the case where the points of S lie on at most
n different planes parallel to the zy-plane. Consider the case where the points lie on n + 1
different planes. Find a plane, parallel to the zy-plane, which divides the points of S into
two nonempty parts 7', U, but itself does not contain any points of S. Then |S| = |U|+|T],
\Uz| + |Ti| = Sy and |Uy| + |Tyy| = |Sy| and |U,|,|T.| < |S.|. By the induction hypothesis,
we have

S| = |U| +|T|
< (|UU U2 + (1T | Ty || T2 )2
< S P((U U DY + (1T |ITy ) )
<|SAVP(UL + 1T )2 (U | + | Ty )2
= (I8:1Syl1S-N"?

6. For each positive integer n, S(n) is defnied to be the greatest integersuch that, for
every positive integer k < S(n), n? can be written as the sum of k positive square integers.

(a) Prove that S(n) < n? — 14 for each n > 4.
(b) Find an integer n such that S(n) = n? — 14.

(c) Prove that there are infinitely many integers n such that S(n) = n? — 14.

Soln. (a) From n? = 1+1+---+1, we see that n? can be written as a sum of n? squares.
We can combine 4 ones to get 22, 9 ones to get 32, etc, to reduce the number of squares
by 3, 6, 8, 9, 11, 12, but bot 13. Thus s(n) < n? — 14.

(b) We'll show that 169 can written as a sum of ¢ squares, t = 1,2,...,155.

First 169 = 9+ 4 +4 4 152 x 1 is a sum of 155 squares. By grouping 4 ones into a
4, we can get t = 155,152,...,41. By group 4 fours into 16, we can get ¢t = 38,35,...,11.
By group 4 sixteens into 64, we get t = 8,5. Of course t = 2 is obtained by 52 + 122.

Next we start with 169 = 5 x 4 + 149 x 1 as a sum of 154 squares. Group as before
we get t = 154,151,...,7. For t = 4, we can use 5% + 42 + 82 + 82

Next we start with 169 = 9 + 9 + 151 x 1 as a sum of 153 squares. Group as before
we get t = 153,150, ...,9. Next we use 169 = 3% + 42 + 122 = 4 x 22 + 22 + 122 TO GET
t = 3,6. The list is now complete.



Alt: One such n is 13. (In fact this is the smallest as it it is the smallest numberthat
can be written as the sum of 2 and 3 squares.)

1690 =132=52+122=324+42+122=524+42 + 82+ 82 =32 +4%2 + 4% + 82 + &2

Using the fact that
2r)2 =12 4% 4?2 402 (*)

and
169 =32+ 42 + 42 1 82 82

we can write 169 as a sum of 3t +2, 1 < t < 53. Replacing 32 by 22 4+ 22 4 1 in the above,
we can also write 169 as a sum of 3t 4+ 2, 2 <t < 54, squares. Using 169 = 32 442 + 122
and (x) again, we can write 169 as the sum of 3¢, 1 <t < 11, squares. Moreover in the last
sum, the summands consists of 16 ones and 17 nines. Now use the 32 +32 +324+1 = 7 x 22,
we can write 169 as a sum of 3¢, 12 < ¢ < 16. In the final sum, the summnads consists of
11 ones, 35 fours and 2 nines. The fours and now be broken up using (%) again to obtain
sums of 3t, 17 <t < 51. The list is now complete.

(c) Let n be a number such that S(n?) = n? — 14. We claim that 2n also has the
property. If n? = a2 +b%+- -, then (2n)? = (2a)? + (2b)%2 +- - -. splitting each even squares
as before, we see that (2n)? be written as a sum of ¢ squares, 1 <t < (2n)? — 56. Since
4n? > 169, we can use the grouping described above to get all the representations from

4n? — 55 to 4n? — 14.



