
33th International Mathematical Olympiad

Russia, July 1992.

1. Find all integers a, b, c with 1 < a < b < c such that (a− 1)(b− 1(c− 1) is a divisor of
abc− 1.

Soln. Write x = a − 1, y = b − 1 and z = c − 1. The problem is equivalent to: Find all
integers x, y, z with 0 < x < y < z such that xyz is a divisor of xyz+xy+yz+xz+x+y+z.
Let R(x, y, z) = (xyz + xy + yz + xz + x + y + z)/(xyz). Since R(x, y, z) is an integer,
x, y, z are either all even or all odd. Also

R(x, y, z) = 1 +
1
x

+
1
y

+
1
z

+
1
xy

+
1
xz

+
1
yz

.

If x ≥ 3, then
1 < R(x, y, z) ≤ R(3, 5, 7) < 2

which is impossible. If x = 2, then

1 < R(x, y, z) ≤ R(2, 4, 6) < 3

and so R(2, y, z) = 2. This implies

(y − 3)(z − 3) = 11

which gives y = 4, z = 14.

If x = 1, then
1 < R(x, y, z) ≤ R(1, 3, 5) < 4.

If R(1, x, y) = 2, then 2y + 2z + 1 = 0 which is impossible. If R(1, x, y) = 3, then

(y − 2)(z − 2) = 5.

Thus y = 3, z = 7. So there are two possible solutions

(a, b, c) = (3, 5, 15), (2, 4, 8).

It is easy to check that both are indeed solutions.

2. Let R denote the set of all real numbers. Find all functions f : R → R such that

f(x2 + f(y)) = y + f(x)2 for all x, y ∈ R. (1)

Soln. Let f(0) = s and put x = 0 in (1),

f(f(y)) = y + s2 for all y ∈ R. (2)
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Put y = 0 in (1),
f(x2 + s) = f(x)2 for all x ∈ R. (3)

Put x = 0 in (3),
f(s) = s2 (4)

Add (3) and (4),
s2 + f(x2 + s) = f(x)2 + f(s) for all y ∈ R. (5)

Apply f to both sides and use (2), (3), (4),

x2 + s + s4 = s + (x + s2)2 for all x ∈ R

This gives f(0) = s = 0. Thus, from (2), (3),

f(f(x)) = x, f(x2) = f(x)2 for all x ∈ R. (6)

The latter implies that f(x) ≥ 0 if x ≥ 0. If f(x) = 0 for some x ≥ 0, then

0 = f(x)2 = f(x2) = f(x2 + f(x)) = x + f(x)2 = x.

Thus
f(x) > 0 for all x > 0. (7)

Replace y by f)y) and x by
√

x, we have

f(x + y) = f(x) + f(y) for all x > 0, y ∈ R. (8)

Now if x > y, then

f(x) = f((x− y) + y) = f(x− y) + f(y) > f(y).

Suppose there exists x such that f(x) > x, then x = f(f(x)) > f(x), a contradiction.
Suppose there exists y such that f(y) < y, then y = f(f(y)) < f(y), again impossible.
Thus f(x) = x for all x. This is indeed a solution.

3. Consider nine points in sapce, no four of which are coplanar. Each pair of points is
joined by an edge (that is, a line segment) and each edge is either coloured blue or red
or left uncoloured. Find the smallest value of n such that whenever exactly n edges are
coloured the set of coloured edges necessarily contains a triangle all of whose edges have
the same colour.

Soln. If three edges are not coloured, then the three edges are either idependent, form a
triaangle, form a path or form a star. In each case, the coloured edges contained a K6. Thus
there is a monochromatic triangle. If there are uncloured edges, then the following example
shows that it is possibld that there are no monochromatic triangles. Label the vertices
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ai, bi, i = 1, 2, 3, 4 and x. Leave the edges a1a3, a2a4, b1b3, b2b4 uncoloured. Coloured the
following edges red:

xai, i = 1, 2, 3, 4
b1b3, b1b4, b2b3, b2b4,

a1b1, a1b2, a2b1, a2b2,

a3b3, a3b4, a4b3, a4b4.

The remaining edges are coloured blue.

4. In the plane let C be a circle, L a line tangent to the circle and M a point on L. Find
the locus of all points P with the folloiwng property:

there exist two points Q, R on L such that M is hte midpoint of QR and C is
the incribed circle of triangle PQR.

Soln. Consider any triangle ABC with incircle Γ and excircle Γ′ which touches the side
BC externally. If X and Y are the points of where BC touches the incircle and excircle,
respecitvely. We have the following:

(1) CY = BX = s − AC, where s is the semiperimater of ABC. This follows from
the fact that AB + BY = AC + CY and AB + BY + AC + CX = 2s. (2) It follows from
(1) that the midpoint of BC and XY are the same.

(2) If XZ is a diameter of the incircle, then the homothety with centre A that takes
the incircle to the excircle takes Z to Y .

Now we solve the problem: Let X be the point where L touches the circle C and XZ
be a diameter of C. Also let Y be the point on L which is symmetric to X with respect
to M . We claim that the locus is the open ray on the line Y Z emanating away from the
circle.

If P is point with the desired property, then the homothety with centre at P taking
the incircle C of PQR to its excircle takes Z to Y . Thus P lies on the open ray.

Conversely, any point on the open ray has the desired property.

5. Let S be a finite set of points in three-dimensional space. Let Sx, Sy, Sz be the sets
consisting of the orthogonal projections of the points of S onto the yz-plane, zx-plane,
xy-plane respectively. Prove that

|S|2 ≤ |Sx||Sy||Sz|

where |A| denotes the number of elements in the finite set set A. (Note: the orthogonal
projection of a point onto a plane is the foot of the perpendicular from the point to the
plane).

Soln. For each (i, j) let Sij be the set of points of the type (x, i, j), i.e., the set of points
that project to (i, j). Then

S = ∪(i,j)∈Sx
Sij .
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By Cauchy’s inequality,
|Sx|

∑
(i,j)∈Sx

|Sij |2 ≥ |S|2.

Let X = ∪(i,j)∈Sx
Sij×Sij . Then |X| =

∑
(i,j)∈Sx

|Sij |2. The map f : X → Sy×Sz defined
by f((x, i, j), (x′, i, j)) = ((x, i), (x, j)) is certainly injective. So |X| ≤ |Sy||Sz|.

Second soln. First we assume that all the points of S lie on a plane prallel to the xy-plane.
In this case, we have |Sx||Sy| ≥ |S|2. But |Sz| ≥ 1 so the result holds.

So we assume that the result holds for the case where the points of S lie on at most
n different planes parallel to the xy-plane. Consider the case where the points lie on n + 1
different planes. Find a plane, parallel to the xy-plane, which divides the points of S into
two nonempty parts T,U , but itself does not contain any points of S. Then |S| = |U |+ |T |,
|Ux|+ |Tx| = Sx and |Uy|+ |Ty| = |Sy| and |Uz|, |Tz| ≤ |Sz|. By the induction hypothesis,
we have

|S| = |U |+ |T |
≤ (|Ux||Uy||Uz|)1/2 + (|Tx||Ty||Tz|)1/2

≤ |Sz|1/2((|Ux||Uy|)1/2 + (|Tx||Ty|)1/2)

≤ |Sz|1/2(|Ux|+ |Tx|)1/2(|Uy|+ |Ty|)1/2

= (|Sx||Sy||Sz|)1/2

6. For each positive integer n, S(n) is defnied to be the greatest integersuch that, for
every positive integer k ≤ S(n), n2 can be written as the sum of k positive square integers.

(a) Prove that S(n) ≤ n2 − 14 for each n ≥ 4.

(b) Find an integer n such that S(n) = n2 − 14.

(c) Prove that there are infinitely many integers n such that S(n) = n2 − 14.

Soln. (a) From n2 = 1+1+ · · ·+1, we see that n2 can be written as a sum of n2 squares.
We can combine 4 ones to get 22, 9 ones to get 32, etc, to reduce the number of squares
by 3, 6, 8, 9, 11, 12, but bot 13. Thus s(n) ≤ n2 − 14.

(b) We’ll show that 169 can written as a sum of t squares, t = 1, 2, . . . , 155.

First 169 = 9 + 4 + 4 + 152 × 1 is a sum of 155 squares. By grouping 4 ones into a
4, we can get t = 155, 152, . . . , 41. By group 4 fours into 16, we can get t = 38, 35, . . . , 11.
By group 4 sixteens into 64, we get t = 8, 5. Of course t = 2 is obtained by 52 + 122.

Next we start with 169 = 5 × 4 + 149 × 1 as a sum of 154 squares. Group as before
we get t = 154, 151, . . . , 7. For t = 4, we can use 52 + 42 + 82 + 82.

Next we start with 169 = 9 + 9 + 151 × 1 as a sum of 153 squares. Group as before
we get t = 153, 150, . . . , 9. Next we use 169 = 32 + 42 + 122 = 4× 22 + 22 + 122 TO GET
t = 3, 6. The list is now complete.
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Alt: One such n is 13. (In fact this is the smallest as it it is the smallest numberthat
can be written as the sum of 2 and 3 squares.)

169 = 132 = 52 + 122 = 32 + 42 + 122 = 52 + 42 + 82 + 82 = 32 + 42 + 42 + 82 + 82.

Using the fact that
(2r)2 = r2 + r2 + r2 + r2 (∗)

and
169 = 32 + 42 + 42 + 82 + 82

we can write 169 as a sum of 3t + 2, 1 ≤ t ≤ 53. Replacing 32 by 22 + 22 + 1 in the above,
we can also write 169 as a sum of 3t + 2, 2 ≤ t ≤ 54, squares. Using 169 = 32 + 42 + 122

and (∗) again, we can write 169 as the sum of 3t, 1 ≤ t ≤ 11, squares. Moreover in the last
sum, the summands consists of 16 ones and 17 nines. Now use the 32 +32 +32 +1 = 7×22,
we can write 169 as a sum of 3t, 12 ≤ t ≤ 16. In the final sum, the summnads consists of
11 ones, 35 fours and 2 nines. The fours and now be broken up using (∗) again to obtain
sums of 3t, 17 ≤ t ≤ 51. The list is now complete.

(c) Let n be a number such that S(n2) = n2 − 14. We claim that 2n also has the
property. If n2 = a2 +b2 + · · ·, then (2n)2 = (2a)2 +(2b)2 + · · ·. splitting each even squares
as before, we see that (2n)2 be written as a sum of t squares, 1 ≤ t ≤ (2n)2 − 56. Since
4n2 > 169, we can use the grouping described above to get all the representations from
4n2 − 55 to 4n2 − 14.
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