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1. Let p be a prime number congruent to 1 modulo 4. Define the set

S = {(a, b, c) ∈ N2 × (Z− {0}), 4ab + c2 = p}.

Now consider
S1 = {(a, b, c) ∈ S, a > b + c}.

Assume that |S1| is odd. Show that p can be expressed as a sum of two squares.

2. Prove that the circle with equation x2 + y2 = 1 contains an infinite number of points with
rational coordinates such that the distance between each pair of the points is irrational.

3. Let f : R→ R be a function such that

(a) f(2x) = 2 [f(x)]2 − 1, for all x ∈ R;

(b) There exists a real number x0 such that f(2nx0) ≤ 0 for all natural numbers n.

Determine the value of f(x0).
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Solutions

1. S is non empty since (k, 1, 1) ∈ S and |S| is also finite since if (a, b, c) ∈ S, a, b, |c| are all
bounded by p. Now consider

S1 = {(a, b, c) ∈ S, a > b + c} S2 = {(a, b, c) ∈ S, a < b + c}.

Then S1 and S2 are clearly disjoint, and if a = b+ c, we have p = 4b(b+ c)+ c2 = (c+2b)2,
which is a contradiction. Hence S is the disjoint union of S1 and S2. Consider now
(a, b, c) → (b, a,−c). This is a bijection from S1 to S2. Hence |S1| = |S2|.
Since |S1| is odd, we have |S| ≡ 2 (mod 4). Now consider

S3 = {(a, b, c) ∈ S, a 6= b}.

Then for all (a, b, c) ∈ S, with a 6= b, we can associate 4 distinct triplets

(a, b, c), (a, b,−c), (b, a, c), (b, a,−c)

in S. Hence |S3| is divisible by 4. This shows that S3 ⊂ S (strict inclusion). Hence there
exists a triplet (a, a, c) ∈ S. Thus p = 4a2 + c2 = (2a)2 + c2, as required. Note that the
assumption that |S1| is odd can be proven. (As Andre pointed out, consider the map f
which maps (a, b, c) → (a− b− c, b,−2b− c) from S1 to itself. f2 = Id, and we can check
that a ’fixed point’ is (p−1

4 , 1,−1). A pairing up will give you the result.)

2. Let p be a prime and p ≡ 1 (mod 4). Then there exists integers a and b such that p = a2+b2,
and by Dirichlet’s Theorem, there exists infinitely primes of the form 4k + 1, thus consider
the set of points given by

xp =

(
a2 − b2

p
,
2ab

p

)
All these points lie on the unit circle, and are irreducible fractions. If p 6= q, we have

||xpxq|| =
2|ad− bc|
√

pq

and since p 6= q are primes, the above fraction is irrational and we are done.

3. Note that if f(x0) is a solution, −f(x0) is also a solution. It is clear that f(x0) 6= 0. So
assume WLOG f(x0) = p < 0. Then we have f(2n−1x0) = 2

[
f(2n−2x0)

]2 − 1 ≥ −1,
and thus −1 ≤ f(2n−1x0) < 0 for all natural numbers n. Now we obtain a better upper
bound. We claim that we have −1 ≤ f(2n−1x0) ≤ −1

4 . Suppose that there exists a natural
number m such that 0 > f(2m−1x0) > −1

4 . Then we have −1 ≤ f(2mx0) < −7
8 , and hence

1 > f(2m+1x0) > 17
32 > 0, a contradiction. Now from the given functional, we have

f(2x) +
1
2

= 2
(

f(x)− 1
2

)(
f(x) +

1
2

)
,

and hence for all natural numbers n, we have∣∣∣∣f(2nx0) +
1
2

∣∣∣∣ = 2
∣∣∣∣f(2n−1x0)−

1
2

∣∣∣∣ ∣∣∣∣f(2n−1x0) +
1
2

∣∣∣∣ ≥ 2
(

1
2

+
1
4

) ∣∣∣∣f(2n−1x0) +
1
2

∣∣∣∣ ,
or equivalently ∣∣∣∣f(2n−1x0) +

1
2

∣∣∣∣ ≤ 2
3

∣∣∣∣f(2nx0) +
1
2

∣∣∣∣ .
Hence we have∣∣∣∣f(x0) +

1
2

∣∣∣∣ ≤ 2
3

∣∣∣∣f(2x0) +
1
2

∣∣∣∣ ≤ ... ≤
(

2
3

)n+1 ∣∣∣∣f(2n+1x0) +
1
2

∣∣∣∣ ≤ (2
3

)n+1 (
1 +

1
2

)
≤
(

2
3

)n

,

and letting n →∞, we have ∣∣∣∣f(x0) +
1
2

∣∣∣∣→ 0,

and thus f(x0) = −1
2 . Hence we have f(x0) = ±1

2 .
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