Singapore International Mathematical Olympiad
National Team Selection Tests 1994/95 - 2003/2004

1994/95

1.1.%

1.2.

1.3.

2.1.

2.2.

2.3.

Let N ={1,2,3,...} be the set of all natural numbers and f : N — N be a function.
Suppose f(1) =1, f(2n) = f(n) and f(2n+ 1) = f(2n) + 1 for all natural numbers
n.

(i) Calculate the maximum value M of f(n) for n € N with 1 <n < 1994.

(ii) Find all n € N, with 1 <n < 1994, such that f(n) = M.

ABC is a triangle with ZA > 90°. On the side BC, two distinct points P and @) are
chosen such that /BAP = /PAQ and BP - CQ = BC - PQ. Calculate the size of
ZPAC.

In a dance, a group S of 1994 students stand in a big circle. Each student claps the
hands of each of his two neighbours a number of times. For each student z, let f(x) be
the total number of times x claps the hands of his neighbours. As an example, suppose
there are 3 students A, B and C. A claps hand with B two times, B claps hand with
C' three times and C' claps hand with A five times. Then f(A) = 7, f(B) = 5 and

f(C)=s.
(i) Prove that {f(z) | x € S} # {n | n is an integer,2 < n < 1995}.

(ii) Find an example in which

{f(z) |z € S} ={n|nis an integer,n # 3,2 < n < 1996}.

Let f(z) = H% where z is a positive real number, and for any positive integer n, let

gn(@) =2+ f(2) + f(f(2) + -+ [ (),
the last term being f composed with itself n times. Prove that

(i) gn(@) > gn(y) if 2 >y > 0.
(i) gn(1) = %—1—%—1—- S fﬁzz, where F1 = Fo =1 and F, 0 = Fj11+ F, forn > 1.

Let ABC be an acute-angled triangle. Suppose that the altitude of AABC at B
intersects the circle with diameter AC at P and @, and the altitude at C' intersects
the circle with diameter AB at M and N. Prove that P,Q, M and N lie on a circle.

Show that a path on a rectangular grid which starts at the northwest corner, goes
through each point on the grid exactly once, and ends at the southeast corner divides
the grid into two equal halves: (a) those regions opening north or east; and (b) those
regions opening south or west.

(The figure above shows a path meeting the conditions of the problem on a 5 x 8 grid.
The shaded regions are those opening north or east while the rest open south or west.)



1995 /96

1.1.

1.2

1.3.

2.1.

2.2.

2.3.

Let P be a point on the side AB of a square ABC'D and @ a point on the side BC.
Let H be the foot of the perpendicular from B to PC. Suppose that BP = BQ.
Prove that QH is perpendicular to HD.

For each positive integer k, prove that there is a perfect square of the form n2* — 7,
where n is a positive integer.

Let S = {0,1,2,...,1994}. Let a and b be two positive numbers in S which are
relatively prime. Prove that the elements of S can be arranged into a sequence
S1, 82,83, ...,51995 such that s;41 —s; = a or £b (mod 1995) for i = 1,2,...,1994.

Let C, B, E be three points on a straight line [ in that order. Suppose that A and D
are two points on the same side of [ such that

(i) LZACE = ZCDE = 90° and

(il) CA = CB = CD.

Let F be the point of intersection of the segment AB and the circumcircle of AADC.
Prove that F' is the incentre of ACDE.

Prove that there is a function f from the set of all natural numbers to itself such that

for any natural number n, f(f(n)) = n?.

Let S be a sequence ni,ns,...,n1995 of positive integers such that ny 4+ - -+ niges =
m < 3990. Prove that for each integer ¢ with 1 < ¢ < m, there is a sequence
Ny s Migs -+ -y NGy, Where 1 < i < dig < -0 < gy <1995, ny, +---+n;, = g and k
depends on gq.

1996 /97

1.1.

1.2.

1.3.

Let ABC be a triangle and let D, and F' be the midpoints of the sides AB, BC
and C'A respectively. Suppose that the angle bisector of /BDC meets BC at the
point M and the angle bisector of ZADC meets AC at the point N. Let M N and
CD intersect at O and let the line FO meet AC at P and the line FFO meet BC' at
Q. Prove that CD = PQ.

Let a, be the number of n-digit integers formed by 1,2 and 3 which do not contain
any consecutive 1’s. Prove that a, is equal to (3 + %)(\/3 +1)" rounded off to the
nearest integer.

Let f: R — R be a function from the set R of real numbers to itself. Find all such
functions f satisfying the two properties:

(a) f(z+ f(y) =y + fz) forallz,y €R,

(b) the set {f;:r) : x is a nonzero real number} is finite.



2.1.

2.2.

2.3.

Four integers ag, by, cg, dg are written on a circle in the clockwise direction. In the first
step, we replace aq, by, co, dy by a1, b1,c1,d;, where a; = ag — by, b1 = bg — ¢, c1 =
co — dg,dy = dyp — ag. In the second step, we replace ai, b1, c1,dy by asg, b, co,da,
where as = a; — b1,b0 = by — ¢c1,c9 = ¢1 — di,do = dy — a;. In general, at the
kth step, we have numbers ag, bg, cx, d on the circle where ap = ap_1 — bp_1,bp =
bp—1 — Ch—1,Ck = Cp—1 — dp—1,d, = dr_1 — ap_1. After 1997 such replacements, we
set a = a1997,b = big97,¢ = ci997,d = dyog7. Is it possible that all the numbers
|bc — ad|, |ac — bd|, |ab — cd| are primes ? Justify your answer.

For any positive integer n, evaluate

L242)

i < n—1i+1 )
,L' bl

i=0

where ( m > = _om and || is the greatest integer less than or equal to
k kl(m — k)! 2

n+1
-

Suppose the numbers ag, a1, as, ..., a, satisfy the following conditions:

1 1
agzi, ak_H:ak—i—fai for k=0,1,...,n—1.
n

1
Prove that 1 — — <a, < 1.
n

1997/98

1.1.

1.2.

1.3.

2.1.

Let ABCDEF be a convex hexagon such that AB = BC', CD = DE and EF = FA.
Prove that

BE "DAtTFC”
When does the equality occur?
Let n > 2 be an integer. Let S be a set of n elements and let 4;, 1 < ¢ < m, be
distinct subsets of S of size at least 2 such that

BC DFE FA>3
5"

AiﬁA]‘#@, AN A #0, AjﬂAk#@ imply AiﬂAjﬂAk#Q.

Show that m < 27—1 — 1.

Suppose f(z) is a polynomial with integer coefficients satisfying the condition
0 < f(c) <1997 for each ¢ € {0,1,...,1998}.

Is is true that f(0) = f(1) =--- = f(1998)7

Let I be the centre of the inscribed circle of the non-isosceles triangle ABC, and let
the circle touch the sides BC, C' A, AB at the points Ay, By, C1 respectively. Prove
that the centres of the circumcircles of AAITA;, ABIB; and ACICy are collinear.



2.2. Letay>--->an > apt1 =0 be a sequence of real numbers. Prove that
n n
Zak < Z VE (Vag — /ars1) -
k=1 k=1
2.3.  Let p and ¢ be distinct positive integers. Suppose p? and ¢ are terms of an infinite
arithmetic progression whose terms are positive integers. Show that the arithmetic
progression contains the sixth power of some integer.
1998/99
1.1. Find all integers m for which the equation
23 —ma? +max — (m? +1) =0
has an integer solution.
1.2. Is it possible to use 2 x 1 dominoes to cover a 2k x 2k checkerboard which has 2
squares, one of each colour, removed?
1.3.  Find the number of 16-tuples (z1,z2,...,z16) such that
(i) x;==+1 fori=1,...,16,
(i) 0<azi+ao+ - +ax, <4 forr=12_.., 15,
(iii) T+ 22+ +x10 =4
2.1. Let M and N be two points on the side BC' of a triangle ABC such that BM =
MN = NC. A line parallel to AC' meets the segments AB, AM and AN at the
points D, E and F respectively. Prove that EF = 3DE.
2.2.  Find all possible values of
i Rl
+ )
p p
where x is a real number and p is a nonzero integer.
Here |z| denotes the greatest integer less than or equal to z.
2.3.  Let f(z) = 2199 — 2199 4 219 1 1. Prove that there is an infinite set of prime numbers,
each dividing at least one of the integers f(1), f(2), f(3), f(4),---
1999/2000
1.1. Inatriangle ABC, AB > AC, the external bisector of angle A meets the circumcircle
of triangle ABC' at F, and F' is the foot of the perpendicular from F onto AB. Prove
that 2AF = AB — AC.
1.2.  Find all prime numbers p such that 57 4+ 12? is a perfect square.
1.3.  There are n blue points and n red points on a straight line. Prove that the sum of

all distances between pairs of points of the same colour is less than or equal to the
sum of all distances between pairs of points of different colours.



2.1.

2.2.

2.3.

Find all functions f : R — R such for any z,y € R,
(@ —y)fe+y) - (z+y)flz—y) = day(@® - y*).

In a triangle ABC, ZC = 60°, D, E, F are points on the sides BC, AB, AC' respec-
tively, and M is the intersection point of AD and BF'. Suppose that CDEF is a
rhombus. Prove that DF? = DM - DA.

Let n be any integer > 2. Prove that Y 1/pg = 1/2, where the summation is over all
integers p, ¢ which satisfy 0 <p<q¢<mn,p+q>n, (p,q) = 1.

2000,/2001

1.1.

1.2.

1.3.

2.1.

2.2.

2.3.

Let a, b, c,d be four positive integers such that each of them is a difference of two
squares of positive integers. Prove that abed is also a difference of two squares of
positive integers.

Let P, @ be points taken on the side BC of a triangle ABC, in the order B, P,Q, C.
Let the circumcircles of APAB, AQAC intersect at M(# A) and those of APAC,
AQAB at N. Prove that A, M, N are collinear if and only if P and @) are symmetric
in the midpoint A’ of BC.

A game of Jai Alai has eight players and starts with players P; and P, on court and
the other players Ps, Py, Ps, Py, P7, Ps waiting in a queue. After each point is played,
the loser goes to the end of the queue; the winner adds 1 point to his score and stays
on the court; and the player at the head of the queue comes on to contest the next
point. Play continues until someone has scored 7 points. At that moment, we observe
that a total of 37 points have been scored by all eight players. Determine who has
won and justify your answer.

In the acute triangle ABC, let D be the foot of the perpendicular from A to BC,
let EZ be the foot of the perpendicular from D to AC, and let F' be a point on the
line segment DE. Prove that AF is perpendicular to BE if and only if FE/FD =
BD/DC.

Determine all the integers n > 1 such that

n n—1

2
E T; > Ty E x;
i=1 i=1

for all real numbers x1, o, ..., Ty.
Let L(n) denote the least common multiple of {1,2...,n}.

(i) Prove that there exists a positive integer k such that

L(k) = Lk 4+ 1) = - -- = L(k + 2000).

(ii) Find all m such that L(m + i) # L(m +i+1) for all i = 0,1, 2.



2001 /2002

1.1. Let A, B,C, D, E be five distinct points on a circle I" in the clockwise order and let
the extensions of C'D and AF meet at a point Y outside I'. Suppose X is a point on
the extension of AC' such that X B is tangent to I' at B. Prove that XY = XB if
and only if XY is parallel DE.

1.2.  Let n be a positive integer and (z1,x2,...,22,), z; = 0or 1, i = 1,2,...,2n be a
sequence of 2n integers. Let .S, be the sum

Sp = 129 + X3T4 + -+ + Top—1Ton.
If O,, is the number of sequences such that S, is odd and E, is the number of
sequences such that S, is even, prove that
O, 2"-1
E, 241
1.3.  For every positive integer n, show that there is a positive integer k such that
2k* + 2001k +3=0 (mod 2").
2.1. Let x1,z9,z3 be positive real numbers. Prove that
2 2 213
(21 + 23 + 3) <3
(@F + 23 +23)* ~

2.2.  For each real number z, |z| is the greatest integer less than or equal to x. For
example [2.8] = 2. Let » > 0 be a real number such that for all integers m,n, m|n
implies |mr|||nr]. Prove that r is an integer.

2.3.  Find all functions f : [0,00) — [0, 00) such that f(f(z))+ f(z) = 12z, for all z > 0.

2002 /2003

1.1. Determine whether there exists a positive integer n such that the sum of the digits
of n? is 2002.

1.2.  Three chords AB, CD and EF of a circle intersect at the midpoint M of AB. Show
that if CE produced and DF produced meet the line AB at the points P and @
respectively, then M is also the midpoint of PQ.

1.3. In how many ways can n? distinct real numbers be arranged into an n x n array (aij)
such that max; min; a;; = min; max; a;;?

2.1. Let A = {3+ 10k, 6 + 26k, 5+ 29k, k = 1,2,3,4,---}. Determine the smallest

positive integer r such that there exists an integer b with the property that the set
B={b+rk, k=1,2,3,4,---} is disjoint from A.



2.2.  Let M be a point on the diameter AB of a semicircle I'. The perpendicular at M
meets the semicircle I' at P. A circle inside I' touches I' and is tangent to PM at Q
and AM at R. Prove that PB = RB.

2.3.  Determine all functions f : Z — Z, where Z is the set of integers, such that

flm+f(f(n)) = =f(f(m+1)) —n

for all integers m and n.
2003/2004

1.1. Let N be the fourth root of a product of 8 consecutive positive integers. Prove that
the greatest integer less than or equal to N is even.

1.2.  Let I' be a circle with center I, the incenter of triangle ABC. Let D, E, F be points of
intersection of I with the lines from I that are perpendicular to the sides BC,CA, AB
respectively. Prove that AD, BE, C'F' are concurrent.

1.3.  Find all pairs of integers (x,y) satisfying 2° + y° = (z + y)3.

2.1.  Let A, B,C, D be four distinct points arranged in order on a circle. The tangent to
the circle at A meets the ray C'B at K and the tangent to the circle at B meets the
ray DA at H. Suppose BK = BC and AH = AD. Prove that the quadrilateral
ABCD is a trapezium.

2.2.  Determine the smallest constant k£ > 0 such that

ab n be n ca <ka+b+o)
a+b+2c b4+c+2a cH+a+2b~ @ ’

for all a,b,c > 0.

2.3. Consider an n X n square lattice with points colored either black or white. A square
path is a closed path in the shape of a square with edges parallel to the edges of the
lattice. Let M (n) be the minimum number of black points needed for an n x n square
lattice so that every square path has at least one black point on it. Prove that

2 2
?(n —1)2<M(n) < ?nQ.

(*The numbering 1.1 refers to the first question of the selection test in the first day, while 2.1 refers
to the first question of the selection test in the second day.)



Solutions to National Team Selection Tests
Prepared by Tay Tiong Seng and Wong Yan Loi
1994/95

1.1 Tt can be proved by induction that f(n) is the number of ones in the binary represen-
tation of n.

(i) There can be at most 10 ones in the binary representation of a natural number if it is
less than or equal to 1994 = 11111001010(3). Hence M = 10.

(ii) For any natural number n less than or equal to 1994, f(n) = 10 if and only if n is
1023 = 1111111111(2),
1535 = 10111111111 ),
1791 = 11011111111(2),
1919 = 111011111119,
1983 = 11110111111 ).

1.2. Stewart’s theorem. In AABC, D is a point on BC such that AD bisects ZA. Then
AB:BD =AC :CD.

1st solution

A
R
B P Q C
. , AB BP
Applying Stewart’s theorem to AABQ, we have E iz Q.
B AB
Given BP - CQ = BC - PQ, it follows that C’CCQ @

Now let R be the point on AC such that QR is parallel to BA.
AB BC AB
Then — = —
"RQ T CQ AQ
Hence RQ = AQ and ZQAR = ZQRA.

Therefore /PAC = /PAQ + ZQAR = %(ZBAQ + ZQAR+ ZQRA) =%

2nd solution

C’B PB AB
Since — , by Stewart’s theorem, AC is the external angle bisector of ZBAQ.

Hence /PAC =

1.3. (i) Note that twice the total number of clappings is equal to }_ g f(2) which cannot
be the odd number 243 +4+ --- 4 1995.

(ii) Let n > 2. For a group S, of 4n — 2 students, the following configuration gives an
example in which {f(z) | z € Sp} = {2,4,5,....,4n}.



Each circle in the diagram represents a student z and the number in the circle represents
f(x). The number on each edge represents the number of times the two adjacent students
clap hands with each other. Taking n = 499 gives an example of the problem.

2.1. (i) Denote the function f(z) composed with itself n times by £ (z). Also let go(x)
be the identity function. Note that f(?)(z) is strictly increasing for = > 0. We shall prove
by induction on n that g,(x) is strictly increasing for x > 0. It can easily be checked that
g1(z) is strictly increasing for x > 0.

Suppose for n > 2, g1(x), ..., gn—1(x) are strictly increasing. Let = > y > 0. We have

gn(@) = gn(y) = (@ —y) + (f(@) = fW) + (P (@) = fOW) +- -+ (f™(2) — fM(y))
= (91(2) = 1(1)) + (gn—2(f@(@)) = gn2(fP () > 0.

By induction, g, () is strictly increasing.

. Fy F; Fiy Fy Fni

ii) Note that — =1 and = . Hence — + --- + = 1).

& Fy f(Fz'+1) Fito Fy Frio gn(1)
B

2.2. Since AADP is similar to AAPC, we have
AP/AD = AC/AP. Hence AP? = AD - AC = i
(BDcot A) - AC = 2(ABC)cot A, where (ABC) is
the area of AABC. Similarly, AM? = 2(ABC) cot A.
Hence AP = AQ = AM = AN = \/2(ABC)cot A. 4 C
This shows that P, @, M, N lie on the circle centered \J
at A with radius \/2(ABC') cot A.

Q

2.3. Let such a path be given. First the following facts are observed.
(i) The number of edges of the path is nm — 1.



(ii) By induction, each region with s squares is adjacent to 2s + 1 edges of the path.

(iii) Each edge on the north or east side of the grid which is not included in the path

corresponds to exactly one shaded region.

Let the number of shaded regions be k and let s1, so, ..., s be the number of squares in each

of these regions. From (iii), it follows that the number of edges of the path on the north

and east side of the grid is (m — 1) + (n — 1) — k. Hence by (ii), the total number of edges
k

of the path is Z(2si +1) + [(m—1)+ (n—1) —k]. By (i), we have

i=1
k
Z(Zsi—f—l) + [(m=-1)+Mn—-1)—kl=nm-—1.
i=1
i 1
From this the total number of shaded squares is Z s; = §(m —1(n-1).
i=1

This problem appears in the American Mathematical Monthly. (See The American Mathe-
matical Monthly, Vol.104, No.6, June-July 1997, p572-573.)

1995/96

1.1. Let BH intersect AD at F. Then AAF B is congruent to
ABPC. Hence AF = BP = BQ. Therefore FD = QC and
QCDF is a rectangle. Since ZCHF = 90°, the circumcircle P
of the rectangle QCDF passes through H. As QD is also a \
diameter of this circle, we have ZQH D = 90°. \

A F D

1.2. Suppose there is a perfect square a? of the form n2¥ — 7 for some positive integer n.
Then a is necessarily odd. We shall show how to produce a perfect square of the form
n/2F1 — 7 for some positive integer n’. If n is even, then a? = (n/2)28*! — 7 is of the
required form. Suppose that n is odd. We wish to choose a positive integer m such that
(a +m)? is of the desired form.

Consider (a+m)? = a®+2am +m? = —7+n2% + m(m +2a). If we choose m = 281, then
m(m + 2a) is an odd multiple of 2¥. Consequently, (a 4+ m)? is of the form n/2¥1 — 7 for
some positive integer n’. Now the solution of this problem can be completed by induction
on k.

1.3. Let p be the smallest positive integer such that pa = 0 (mod 1995), i.e. pa = 1995k for
some positive integer k. Let ¢ = 1995/p. Then ¢ is an integer and it divides a. We claim
that

S ={ma+nb (mod 1995) | m=0,1,..., p—1,n=0,1,...,q— 1}

First note that there are pg = 1995 elements in the set on the right hand side. It suffices
to prove that the elements are distinct. Suppose that ma + nb = m’a + n’b (mod 1995).
Then (m — m')a + (n — n’)b = 1995¢ for some integer ¢. Since g divides 1995 and a, and
q is relatively prime to b, we have ¢ divides (n —n’). But |[n —n/| < ¢—1,s0 n —n' = 0.
Consequently, m = m/. This completes the proof of the claim.



Consider the following sequence:

a,a,...,a,b,—a,—a,...,—a,b,a,a,...,a,b,...,(=1)%a,(-1)%,...,(—1)%,b
p terms p terms p terms p terms
In this sequence, there are ¢ blocks of a,a,...,a,b or —a,—a,...,—a,b making a total of
pq = 1995 terms. For each i = 1,2...,1995, let s; be the sum of the first ¢ terms of this
sequence. Then by the result above, {s1,s2...,81995} = S and s;41 — $; = a or *+b
(mod 1995).
2.1. Since ZCDF = ZCAF = 45°, we have /ZFDFE = A

/ZCDE — ZCDF = 45° = ZCDF. Hence DF bisects
/ZCDE. AsCB = CD, we have ZCBD = ZCDB. Hence
/ZFBD = /CBD—45° = ZCDB —45° = ZFDB. There- D

fore D = F'B. This shows that ABCF is congruent to 4
ADCF. Hence /BCF = /DCF and CF bisects ZDCE. AA
&————

Therefore F' is the incentre of ACDE.

Q

2.2. Let N be the set of all natural numbers. Let A = {n? | n € N}. Let N\ A =
{ni,n9,n3,...}. Define f as follows:

1 ifn=1,

no; ifn:ngi_l, = 1,2,...
f(n) = n3,_; ifn=mngy, i=12...

n%f ifn:n%f_l, k=1,2,...

n%]:i ifn:n%f;, kE=1,2,...

Then f: N — N satisfies the requirement f(f(n)) = n?.

(Note: The function above comes from the following consideration. First, f(1) must be 1.
Let f(2) = 3. Then f(3) = 22, f(22) = 32, f(3%) = 2% etc.. Next, let f(5) = 6. Continuing
as before, we have f(6) = 52, f(5%) = 62, f(62) = 5% etc..)

2.3. Let N = {1,2,...,1995}. Let g be an integer with 1 < ¢ < m. We shall prove the
following statement S(q) by induction (on q):

S(q): There exists a subset Iy of N such that 3 ,c; n; =g

S(1) is true because one of the n;’s must be 1. Now assume that for some ¢ with 1 < g < m,
S(7) is true for ¢ < ¢. Then |I;| < ¢ and 1994.

If n; >q+1foralli € N\ I, then > ,cnni > g+ (¢+2)(1995 — |I,]) = (1996 — |1,4])q +
2(1995 — |1,4]) > 2q + 2(1995 — |1,]) > 2q + 2(1995 — ¢) = 3990, which is a contradiction.
Hence, there exists j € N\ I, such that nj < ¢+1. Let a = min{n; : i ¢ I;}. Thena < ¢+1
and a —1 < g. Thus S(a — 1) is true. By the choice of a, there exists J C I, such that
a—1=>3,c;n;. Therefore,q+1=g+a—(a—1)= > ier,\g i +a. Thus, S(g+1) is true.

This problem appears in the American Mathematical Monthly with 1995 replaced by k£ and
3990 replaced by 2k. The proof above works for the general case too. See (The American
Mathematical Monthly, Vol.105, No.3, March 1998, pg 273-274.)



1996/97

1.1. Since DM and DN are angle bisectors of
/ZBDC and ZADC respectively, by Stewart’s theo-
rem, we have
BM DB AN AD
MC ~ DpCc ™ NC T DC

BM AN
AS A.D DB we have M70 N70

Hence NM//AB and AABC ~ ANMC.

AB AC _ BC
NM ~ NC ~ MC’

Therefore

BM DB DB + DC’ BM + MC  BC AB
Since —— we have

MC ~ DC’ DC MC T MC ~ NM’

FE+DC 2FE
DC — NM’

On the other hand, FE = %AB = DB. Therefore,
1,12

FE  DC NM’

Applying Menelaus’s Theorem to ACM N for the lines EP and F@Q and using the fact that

OM = ON, we have

Consequently,

CP _OM CE CE d CQ ON FC FC
PN _ ON ME ME ° QM OM FN FN’
CE FC cQ CP
Since FE//AB//NM, we have —— YE - FN Therefore Q—M BN that FE//PQ.

Hence PQEF is a trapezoid and O is the intersection point of its two diagonals.

1 1 2
From this, it follows that —— 7E + E NI Consequently, PQ) = DC.

1.2. It can be shown that a,, satisfies the recurrence relation: a, = 2a,—1 + 2a,—2 with
a1 = 3 and ag = 8. Solving this difference equation gives

1 ntp L1 n
n = (5 + Z2) L+ VB + (<1 (G2 = (VB 1)
Next we shall show that (7 (V3 —1)" < 0.5 for n > 1. This is because
11 L1 1 B
fmn21,0<ﬁﬁ—§ﬂﬁﬁd)§%7§—?0@—1%q1—?@—n—05

1
)(1 + v/3)" rounded off to the nearest integer.

V3

1
Thus a,, = (5 +



1.3. 1st solution
Let z € R. By letting 2 = y + f(0), we obtain
fUf(@) = f(fly+ f(0) = fO+ f(y)) =y + f(0) ==

Hence for any t1,t0 € R, f(t1 4+ t2) = f(t1 + f(f(t2))) = f(t1) + f(t2).
Next, consider any positive integer m such that m # — f(x). We have

Flm+ f@) ot fm) o mf()
m+ f(x) m+ f(x)  m+ f(z)’

t
Since the set {fi) | t #0} is finite, there exist distinct positive integers mq,ms with

my,mg # — f(z) such that

f(my+ f(x)) _ f(ma + f(x))
m1 + f(x) mg + f(zx)
z+mf(1)  z+mef(1)

Hence = i@~ mat f(@)

. From this, we have f(x)f(1) = x.

By letting x = 1, we obtain [f(1)]? = 1 so that f(1) = £1. Consequently, f(z) = +x. Also
the functions f(z) = x and f(z) = —x clearly satisfy the two given conditions.

2nd solution

(i) First we prove that f(0) = 0. Putting z = 0 = y, we have f(f(0)) = f(0). If f(0) = a,
then £(0) = /(£(0)) = f(a). Thus a-+ f(0) = (0 -+ f(a)) = F(f(0)) = £(0), whence a = 0.
(ii) Putting = 0, we have f(f(y) =y for all y.

(iii) We will prove that f(z) = £z for all z.

Suppose for some p, f(p) = cp for some constant ¢ # +1. Then f(p + f(p)) = p + f(p).
Let ¢ =p+ f(p). Then ¢ # 0 and f(q) = ¢. Thus f(q+ f(q)) = ¢+ f(q) and f(2q) = 2q.
Inductively we have f(ng) = ng for any positive integer n. Now f(ng+ f(p)) = p + f(nq).
So f(ng+cp) =p+mng. Thus f(ng+cp)/(ng+cp) =1—(c—1)p/(ng+cp). Since c—1 # 0
and there are infinitely many choices for n so that ng+ cp # 0, this gives an infinite number
of members in the set {f(x)/x} contradicting the second condition. Thus ¢ = +1.

(iv) For f(p) = p, we will prove that f(x) = z for all x.

If f(—p) = p, then —p = f(f(—p)) = f(p) = p which is impossible. Thus f(—p) = —p.
Suppose there exists r such that f(r) = —r. Then f(r+f(p)) = p+f(r), ie., f(r+p) = p—r.
Therefore f(r+p)/(r+p) = (p—r)/(r+p) # £1. (Note that the denominator is not zero.)
(v) From the above we conclude that either f(z) = x for all x or f(z) = —x for all .
Clearly these functions satisfy the two given conditions. Thus these are the only two
functions required.

2.1. Let a,b, c,d represent the numbers at any stage subsequent to the initial one. Then
a+b+c+d=0sothat d = —(a+b+c). It follows that

bc—ad=bc+ala+b+c) = (a+b)(a+c),
ac—bd=ac+bla+b+c)=(a+b)(b+c),
ab—cd=ab+cla+b+c)=(a+c)(b+c).

Hence, |(bc — ad)(ac — bd)(ab — cd)| = (a + b)?(a + ¢)?(b + c).



Therefore the product of the three quantities |bc — ad|, |ac — bd|, |ab — cd| is the square of
an integer. However the product of three primes cannot be the square of an integer, so the
answer to the question is “NO”.

2.2. < ne ZZ +1 ) is equal to the number of i-subsets of the set S = {1,2,...,n} containing

no consecutive integers. Hence the required sum is just the number a, of subsets of S
containing no consecutive integers. It can be shown easily that a, satisfies the recurrence
relation: a, = ap—1 + an—2 with ag = 1 and a; = 2. This can also be derived from the

identity: . . .
(n—;—&-l ) _ ( (n—l)i—H—l)_i_( (n—z)i—_(zl—1)+1 )

From this, we obtain

ntl n n
Lij(n—iﬂ _54+3V5 (1+45 +5—3\/5 1-5
Fard i )‘ 10 2 10 2 '

2.3. We shall prove by induction on k that

n+1
<

n
_—— f k=1,2,...,n.
2n—k—|—2<ak m—k O IR

For k =1, we have

B 1, 2n+1
al—ao—l—ﬁao— in
Hence
n+1 n
m+l M1

so the induction hypothesis is true for k = 1.
Now suppose the induction hypothesis is true for k = r < n, then

1, 1
Qry1 =0 +—a, =a, | 1+ —a, | .
n n

Hence we have

- n+1 (1+1 n+1 )
a'f’ e — _— r —_—
+ 2n—r+2 n 2n—r+2

n—+1 n+1

2n—r+1  2n—(r+1)+2

On the other hand,

n 1 n n2n—r+1 n
ary1 < (1+n > = ( )

. <
2n —r 2n —r (2n —r)2 2n — (r+1)’

since (2n —r)?2 > (2n —r +1)(2n — (r + 1)). Hence the induction hypothesis is true for
k =1+ 1. This completes the induction step.
When k& = n, we get

1 1 n+1

1—-—<1- = < <
n n+2 n+2 n 2n—n




the required inequality.
1997/98

1.1. Let AC =a, CE =b, AE = c. Applying the Ptolemy’s Theorem' for the quadrilateral
ACEF we get
AC-FEF+CE-AF > AE - CF.

Since EF = AF'| it implies % > % Similarly, % > CJFLG and % > 34 1t follows that

BC’+DE’+FA> a n b n c >3
BE DA FC " b+4+c¢c c+a a+b 2

(1)
The last inequality is well known?. For equality to occur, we need equality to occur at
every step of (1) and we need an equality each time Ptolemy’s Theorem is used. The latter
happens when the quadrilateral ACEF, ABCE, ACDE are cyclic, that is, ABCDFEF is
a cyclic hexagon. Also for the equality in (1) to occur, we need a = b = ¢. Hence equality
occurs if and only if the hexagon is regular.

1.2. We will prove the statement by induction on n. It obviously holds for n = 2. Assume
that n > 2 and that the statement is true for any integer less than n. We distinguish two
cases.

Case 1. There are no i and j such that A; UA; =S and |[4; N A4;| = 1.

Let = be an arbitrary element in S. The number of sets A; not containing x is at most
2"=2 _ 1 by the induction hypothesis. The number of subsets of S containing z is 2"~ .
At most half of these appear as a set A;, since if x € A;, then there is no j such that
A;j = (S — A;) U{x} for otherwise |A; N Aj| = 1. Thus the number of sets A; is at most
2n72 -1 + 2n72 — 2n71 —1.

Case 2. There is an element x € S such that A1 U A9 =S and A; N Ay = {z}.

Let |[A;| =r+1 and |A2| = s+ 1. Then r + s = n — 1. The number of sets A; such that
A; C A is at most 2" — 1 by the induction hypothesis. Similarly the number of sets A; such
that A; C Ay is at most 2% — 1.

If A; is not a subset of A; and Ag, then A1 N A; #0, Ao N A; # (. Since A1 N Ag # 0, we
have A1 NAs N A; # (0. Thus A iNAyNA; = {:L‘} Thus A; = {$} U (Az — Al) U (Al — AQ),
and since the nonempty sets A; — A1 and A; — As can be chosen in 2° — 1 and 2" — 1 ways,
respectively, the number of these sets is at most (2° — 1)(2" — 1). Adding up these partial
results we obtain the result that the number of A4;’s is at most 2"~ — 1.

1.3. 1st solution

Note that for any a, b, we have (a —b)| £ (F(a) — F'(b)). Thus 1998 divides F'(1998) — F'(0),
whence F(1998) = F(0) as |F(1998) — F'(0)| < 1997. Also we have 4 = 1998 — 1994 divides
F(1994) — F(1998) = F(1994) — F(0), and 1994|(F(1994) — F(0)). Thus LCM (4, 1994) =
3988 divides F'(1994) — F(0) which implies F'(1994) = F'(0). By reversing the role of 4 and
1998, we have F(4) = F(0). By considering 5 and 1993, we also have F(1993) = F(5) =
F(0). Then for any a, 1 < a < 1997, we have (x — a)|F(0) — F'(a) for x = 4,5,1993, 1994.
The least common multiplier of the 4 numbers z — a is larger than 1998. Thus F'(a) = F(0).

2nd solution

We shall prove that the statement holds for any integer k£ > 4, not just k = 1998. Consider
any polynomial F'(x) with integer coefficients satisfying the given inequality 0 < F'(¢) < k
for every ¢ € {0,1,...,k + 1}. Note that F(k + 1) = F(0) because F(k + 1) — F(0) is a
multiple of £ 4+ 1 not exceeding k in absolute value. Hence

F(z) - F(0)=z(x — k—1)G(x)



where G(x) is a polynomial with integer coefficients. Thus
k> |F(c)— F(0)|=c(k+1—0¢)|G(c)| foreachce{1,2... k}. (2)

The inequality c¢(k + 1 — ¢) > k holds for each ¢ € {1,2,...,k — 1} which is not an empty
set if k > 3. Thus for any c in this set, |G(c)| < 1. Since G(c) is an integer, G(c) = 0. Thus
2,3,...,k — 1 are roots of G(z), which yields

Flz)-F0)=z(z—-2)(z—3)---(zx—k+1)(z—k—1)H(x). (3)
We still need to prove that H(1) = H(k) = 0. For both ¢ =1 and ¢ = k, (3) implies that
k> [F(e) = FO)] = (k- 2)! -k - |H(c)].

Now (k —2)! > 1 since k > 4. Therefore |[H(c)| < 1 and hence H(c) = 0.
For k =1,2,3 we have the following counterexamples:

F(z)=2z(2—x) fork=1
F(z) =23 —x) for k=2
F(z)=2(4—z)(z —2)? for k=3

2.1. 1st solution

Co A C4 B

Let the line perpendicular to CI and passing through C meet AB at C3. By analogy,
we denote the points A, and Bs. It’s obvious that the centres of the circumcircles of
AIAy, BIBy and CICy are the middle points of AsI, Bsl and CsI, respectively. So it’s
sufficient to prove that A, Bs and (5 are collinear. Let’s note that CCsy is the exterior

bisector of ZAC'B, and so % = g—g. By analogy g;é = g—é and ﬁ;g = ﬁ—g. Thus
C2A BoC AsB _ CA BC AB

CCBBAAC = cBBAAc =1 and by Menelaus’ Theorem?, the points Ay, By and Cy are
collinear.

2nd solution
Let A’, B’, C' be the midpoints of AI, BI, C1I, respectively. Let the perpendicular bisectors
of AI and BI meet at C”. A” and B” are similarly defined.




Then the circumcentre A" of AIA; is the intersection of B”C"” with B’C’. Likewise the
circumcentre B"” of BIBj is the intersection of A”C"” with A’C’ and the circumcentre C"”
of CIC] is the intersection of A” B"” with A’B’.

First we note that the circumcentre of AIB lies on the line C'I. To prove this, let the
circumcircle of AIB meet CI at another point X. Then ZXAB = Z/XIB = (4B + £C).
Thus /XAl = /XAB+ ZBAI = 90°. Thus X1 is a diameter and the circumcentre which
is C” is on the line CI. Similarly, A” is on Al and B” is on BI.

Now we consider the triangles A’B'C’ and A”B"”C”. The lines A’A”, B'B”, and C'C" are
concurrent (at I), thus by Desargues’ Theorem?, the three points, namely, the intersections
of B"C" with B'C’, A”C" with A’C" and A”B"” with A’B’ are collinear.

3rd solution (By inversion)

Let ¢ be the incircle of AABC of radius r. The image of a point X under the inversion
about ¢ is the point X* such that IX-IX* = r2. Inversion about a circle ¢ has the following
properties:

(a) If X lies on ¢, then X* = X.

(b) I* = 0.

(c) If s is a circle intersecting ¢ at two points P,Q and s passes through I, then s* is a
straight line passing through P and Q.

Now A* = A,, where A, is the midpoint of B1C;. Also, A1* = Ay and I* = co. Hence,
the inversion of the circumcircle of AAIA; is the line A1 A,. Similarly, the inversion of the
circumcircle of ABI B is the line BB, and the inversion of the circumcircle of ACIC] is
the line C1C,, where B, is the midpoint of C71 A1 and C, is the midpoint of A1 B;. Note that
the 3 medians A1 A,, B1B,,C1C, of ANA1B1C; are concurrent. Furthermore, they meet at
0o. This means that the circumcircles under consideration pass through two points. (one
of them is I.) Thus they are coaxial and hence their centres are collinear.

2.2. 1st solution
We need to prove that

n 1
Z ay < Z VE(Vay — Vg 1) + /nay.
\ k=1 k=1

We prove this by induction on n. For n = 1 the void sum has value zero and the result is
clear. Assume that the result holds for a certain n > 1. Consider a; > -+ > apt+1 > apt2 =
0. Write S = > }_; ax and b = a,4;. It suffices to prove that

VS+b— VS < —Vnb+4/(n+1)b.
This holds trivially when b = 0. And if b > 0, division by v/b takes it into the form
VU+1-VU <Vn+1-/n,

where U = S/b; equivalently:

3

1 1
< :
VUF1+VU ~ Vn+1+n

Since b = ap4+1 < S/n, we have U > n, whence the last inequality is true and the proof is
complete.

2nd solution



Set zy, = \/ay, — \/ar+1, for k=1,...,n. Then
ay = (x4 +x2)% ag= (24 +3,)% ..., a0, = 22
Expanding the squares we obtain
n n
Z ap = Z kxi +2 Z kxxy. (3)
k=1 k=1 1<k<t<n

Note that the coefficient of xxxy (where k < £) in the last sum is equal to k. The square of
the right-hand side of the asserted inequality is equal to

( z": \/%xk) Z ka? +2 Z Vklzya,. (4)
k=1

1<k<i<n

And since the value of (3) is obviously not greater than the value of (4), the result follows.

3rd solution Let ¢, = vk — vk — 1, then the inequality can be transformed to

n n
Z ap < Z Vagck.
\ k=1 k=1

By squaring both sides, this is in turn equivalent to

n
Z ak(ci —1)+ Z 2\/a;a;cic; > 0.
k=2

0<i<j<n

Note that ¢;c; = ij — i(j — 1) — /(i —1)j + /(i —1)(j — 1). Thus for k =3,...,n,

k—1
Z 2\/a;aicicy, = Z 2 \/ZTC — ik — 1)) (Vaar — Jairiag)
i=1

= +2\/W( k(k—1) — (k—1))
> 2y/ag—1ak(\/ k(k — ) —(k—1)) = Vag_1ar(1 — ci)
Also 2,/a1azcica = \Jajaz (1 — c3). Hence

Z ay ck -1)+ Z 2\/a;a;cic;
0<z<]<n
n

> ap(ck —1) + Z Var_1ag (1 —cl)
k k=2

2

3

= Z (1 —c})(Var_1ar — ax) > 0.
k=2
since y/ag_1ar —ar > 0 and 1 — ck > 0. This completes the proof.
From solutions 2 and 3, we can conclude that equality holds if and only if there exists an
index m such that a; = --- = a,, and a; = 0 for k > m.

2.3. 1st solution

We prove by induction on h, the common difference of the progression. If h = 1, there
is nothing to prove. Fix h > 1 and assume that the statement is true for progressions
whose common difference is less than h. Consider an arithmetic progression with first term



a, and common difference h such that both 22 and 3? are terms in the progression. Let
d = ged(a, h). Write h = de. If an integer n satisfies n = a (mod h) and n > a, then n is a
term in the progression. Thus it suffices to prove that there is a z satisfying 2% = a (mod h)
as this implies (z + kh)® = a (mod h) for any positive integer k¥ and one can always choose
a large k so that (z + kh)% > a.

Case 1. ged(d,e) = 1: We have 22 = a = y* (mod h), hence also (mod e). The number
e is coprime to a, hence to z and y as well. So there exists an integer ¢ such that ty = x
(mod e). Consequently (ty)® = 2% (mod e), which can be rewritten as t%a? = a® (mod e).
Dividing by a? (which is legitimate because ged(a,e) = 1), we obtain ¢ = a (mod e). As
ged(d, e) =1, it follows that ¢t + ke = 0 (mod d) for some integer k. Thus

(t+ke)=0=a (mod d).
Since 5 = a (mod e), we get from the Binomial Formula
(t+ke)*=a (mod e).
And since d and e are coprime and h = de, the latter two equations imply
(t+ke)*=a (mod h).

Case 2. ged(d,e) > 1. Let p be a prime divisor of d and e. Assume that p® is the greatest
power of p dividing a and p? is the greatest power of p dividing h. Recalling that h = de
with e being coprime to a, we see that 8 > a > 1. If follows that for each term of the
progression (a 4+ ih : i = 0,1,...), the greatest power of p which divides it is p®. Since z?
and 72 are in the progression, o must be divisible by 2 and 3. So o = 6 for some integer
~; hence o > 6.

The progression (p~%(a + ih) : i = 1,2,...) with common difference h/p® < h has integer
terms and contains the numbers (z/p®)? and (y/p?)3. By the induction hypothesis it con-
tains a term 2% for some integer z. Thus (pz)® is a term in the original progression. This
completes the induction.

2nd solution

We use the same notation as in the first solution.

The assertion is proved by induction on h. The case d = 1 is trivially true.

(a) ged(a,h) = 1. (a~! exists mod h.) In this case, we have (y/z)® = a (mod h).

(b) ged(a,h) = r > 1. Pick a prime p dividing r and let « be the largest positive integer
such that p® divides r. If a > 6, then

x

a
2)3 "6

o
pﬁ

a
6

d
’ (mod —).

( ? -

b
Ew‘@

a d
By induction hypothesis, there exists z such that 25 = P (mod E) Then (z2p)® = a

(mod h). So we suppose 0 < a < 6. From 2° = a, y? =a (mod h), we have
x> a y? a d
—=— = (mod —). (%)
p p p p p

h d
(i) ged(p, —) = 1. (p~! exists mod —.) Multiply both sides of (*) by p*~6. We have
p p

X a
()P =—
p? P8’



a d

By induction hypothesis, there exists z such that 2% = = (mod —a) Write a = p®d/,
p p

then there is an integer m such that

(p2)° — pa’ = mr.

Since a < 6, p® divides the left hand side of the equation. Thus it also divides m, whence
(pz)8 = p*a’ = a (mod h).
h
(ii) ged(p, —a) =p. Then p® is the largest power of p dividing a. Furthermore, a is a
p

multiple of 3. To see this write z = p°z’, where p does not divide 2’ and let = a + kh
for some positive integer k. Then p*°2’® = 23 = a + kh = p®(a’ + pkh/) for some integer
a’,h' with ged(a’,p) = 1. Consequently, o = 3. Similarly, « is a multiple of 2. Therefore,
« > 6, and this case does not arise.

Footnotes
1. Ptolemy’s Theorem. For any quadrilateral ABC' D, we have

AB-CD+ BC-DA> AC-BD

and equality occurs if and only if ABCD is cyclic.
2. Proof of the inequality. LLet t =a+b, y =a+ ¢, z = b+ ¢, then

a b c /2y « 2z y =z 3
+ + >-|l-+t=+t-F+-+=+-=3) ==
b+c c+a a+b " 2\y =z 2z =z 2z y 2

3. Menelaus’ Theorem. Three points X, Y and Z on the sides BC, CA, and AB
(suitably extended) of triangle ABC' are collinear if and only if

BX OV A7 _

XC YA ZB
4. Desargues’ Theorem. Given any pair of triangles ABC and A’B’C’, the following are
equivalent: (i) The lines AA’, BB’ and C'C’ are concurrent. (ii) The points of intersection
of AB with A’B’, AC with A'C’, BC with B’C’ are collinear.

1988/89

1.1. Suppose p is an integer such that p* — mp? + mp — (m? + 1) = 0. It follows that
(p> +m)(p —m) = 1. Since p and m are integers, we have either

(1) pPP+m=p—m=-1, or

(2) pPP+m=p—m=1.

In case (1), we have m = p+1, and so p> + p+1 = —1 or p? + p+ 2 = 0 which has no real
solution.

In case (2), we have m = p—1, and so p> +p—1 =1 or p? + p — 2 = 0 which has the
solutions p = —2 and 1.

Hence, m = —3 and 0 are the integer values of m for which the given equation has an
integer solution.



1.2. It is only necessary to partition the checker-
board into a closed path one square wide. One way
to do this is shown in the diagram. The squares
lie with alternating colours along the closed path.
The removal of two squares of opposite colours
from any two positions along the path will cut the
path into two open-ended segments (or one seg-
ment if the removed squares are adjacent on the
path).

Each segment must consist of an even number of squares, so each segment must be com-
pletely covered by dominoes.

1.3. 1st solution
More generally, let S,, be the set of all n-tuples (x1,x2, ..., x,) such that

(i) z;==+1 fori=1,...,n,
i) 0<x1+ax2+---4z,<4,forr=1,2...,n—1,
(iil)) z14+z2+4 - +ax, =4

Also let S/, be the set of all n-tuples (z1,2,...,x,) such that

(i) z;==%£1 fori=1,...,n,
(i) —2<ax14+azo+- 4, <2, forr=1,2,....,n—1,
(iii) T+ a2+t =2

Let |Sn| = a, and |S),| = b,. First note that a,, = 0 if n is odd. Hence we consider only
even values of n.

Let (z1,22...,x9;) be an element in So,. Then (z1,z2) = (1,1) or (1,-1). If (z1,22) =
(1,1), then (z3, x4 ..., x2) is an element of S5, _,. If (x1,x2) = (1,—1), then (z3,24. .., x2)
is an element of Sy;_o. Conversely, if each element of S}, , is augmented at the beginning
by two ones, it gives rise to an element of So. Similarly, if each element of Sop_o is
augmented at the beginning by 1 and -1, it gives rise to an element of Sy,. This shows that
agk = bag—2 + azp_2.

Next consider an element (z1,z2...,2z9) in Sh. Then (z1,z2) = (1,-1), (—1,1) or
(—1,—1). Hence, (z3,24...,29) is an element of S}, , if (x1,22) = (1,—1) or (—1,1),
and it is an element of Soi_o if (z1,22) = (—1,—1). By augmenting each element of S,
at the beginning by either 1,-1 or -1,1, it gives rise to an element of S},. Similarly, by
augmenting each element of Sg;_o at the beginning by —1, —1, we get an element of S),.
This shows that boy, = ask_o + 2b9p_9.

By eliminating the boy’s in the above two difference equations, we have ag —3agk_9+aok_4 =
0. The initial conditions are as = 0 and a4 = 1. By solving this difference equation, it gives

- 1 3+\/5 2k—2 1 3_\/5 2k—2
a%_ﬁ 9 - ﬁ 9




2nd solution
Let S/ be the set of all n-tuples (z1,x2,...,x,) such that

(i) z =41 fori=1,...,n,
(i) 0<x1+ax2+---4z,<4,forr=1,2...,n—1,
(iii) 1 +z2+-+x, =2.

Let S| = ¢,. Again, we only have to consider even values of n. Note that each sequence
in Sor must end in two “1”s. By dropping these two ones, we obtain a sequence in S}, .
Conversely, each sequence in S%,_, can be augmented at the end by two “1”s to get a
sequence in Soi. Hence asy = cop_o.

Let’s examine the end terms of each sequence in S%,. The last three terms of any sequence
in S%, are as follow:

-111, 1 -11, 11 -1, =1 —11, =11 —1. (%)
For the first three cases, one can replace them by a single “1” to get a member of S, .
For the last two cases, one can drop the last two terms to get a member of SJ, .
Conversely, for any sequence in S, _,, which ends in a “1”, one can replace the “1” by any
one of the first three endings in (*) to get a sequence in SY,.
Let the number of sequences in S’é’k_Q which end in a “1” be z. Let the number of sequences
in S, which end in a “-1” be y. In the latter case, observe that if this last “-1” is replaced
by a “1”7, then a sequence in So,_s is obtained. Hence, y = agg_o.
Similarly, for any sequence in S5, _, which ends in a “-17, it can be replaced by any one of
the last two endings in (*) to get a sequence in S7,.
Therefore, cop = 3z + 2y = 3(z +y) — y = 3cop—2 — y. That is aggio = 3agk — agg—o. This

is the same difference equation in solution 1.

2.1. Let H and J be the points on AB such
that HE and JF are parallel to BC.

GC FA JF JF
NC NA BN 2NC’
Hence JF = 2GC.

EH AE GC GC

Then

B N G C

Also VB - AM - MC - 9MB This shows that GC = 2FE H. Therefore,
D DF FJ
JEF =4FH. As ADFEH is similar to ADF'J, we have DE - EFH - 4

Consequently, EFF = DF — DE =4DFE — DE =3DFE.

2.2. Let r = x—|x]. Write |z] = Ip+q, wherel,q € Z and 0 < ¢ < |p|. Hence z = Ip+q+r.
Now
—g—r—1

T—D —x—1 g+
=+ ==

q+r
+
pJL p

|-1.

—qg—r—1

So it suffices to find the value of the expression A = |

.

(i) (p>0.)



Q‘f’?“ ) -2 ifg=p—-Tlandr >0
Then | | =0and L D J { —1 otherwise ’
Hence, A — -2 ifg=p —1andr>0'
—1 otherwise
(i) (p = —1.)
+r —q ifr=0 —q—r—1
Then | j -1 ifr>0 and Lip |=q+1
itr=0
Hence, A = { frs0
(iii) (p < —1.) In this case, we have

Lq—i-rJ_{O ifg+r=20 —q—r—1 {1 ifg+r+1=>-p

-1 ifg+r>0 and | P = 0 ifg+r+1<—p°
0 ifg+r=0o0orgq+r>-p-—1
-1 if0<g+r<—-p-1 '

Therefore the possible values of the expression A — 1 are -3,-2,-1, and 0.

Hence, A =

2.3. More generally, we can prove the following result.

Let f(z) be a nonconstant polynomial with integer coefficients. Then the numbers f(1),

f(2), f(3), -+, contain infinitely many prime factors.
Let f(2) = apz™ + an_12" '+ - -+ a12 + ag, where ag, a1, ..., a, € Z and a,, # 0 for some
n > 1.

(1) If ap = 0, then f(k) = k(ank™ ' +a,_1k"2+---+a1). As k can be any prime number,
the numbers f(1), f(2), f(3),- -, contain infinitely many prime factors.
(2) Consider the case ag # 0. Suppose the numbers f(1), f(2), f(3), - - -, contain only finitely
many prime factors, p1,pa,...,Pm. Let y be any integer. We have
fp1p2 - Pmacy) = an(pip2-- - Pmao)™y"™ + an—1(p1p2 - - - pmao)™'y"
-+ ai(pip2 -+ pmao)y + ao,
= aO(Anyn + An—lynil ++ Ay + 1))

where A; = a;(p1p2 - -pm)iaé_l, i=1,2,...,n and A, # 0.

Let g(y) = Apy" + Ap 1y 1+ -+ A1y +1. As pips -+ - pp, divides A; for alli =1,2,...n
we have
g9(y) = multiple of pipa---pm + 1.

Therefore, p1,p2,p3, ..., Pm are not the factors of g(y).

As the equation g(y) = +1 has at most 2n roots, we can pick an integer yo such that
apyo > 0 and g(yo) # +1. Then the integer g(yo) must have a prime factor p distinct from
P1,DP2, -, Pm. Consequently, f(pip2 - pPmaoyo) = apg(yo) has a prime factor different from
P1,P2, - - -, Pm. This contradicts the assumption that pi, po, ..., pn are all the prime factors
of the numbers f(1), f(2), f(3)---.



1999/2000

1.1. Let A’ be the point on AB such that
A'F = FA. Then ANAEA’ is isosceles. Ex-
tend F A" meeting the circumcircle of AABC
at E'. Join BE' and BE. Since ZABC =
/EBC — /ABE = /AA'E — /ABE =
/E'EB, we have BE' = AC. Also, NAE A’ is
similar to AE’BA’ implies that A’B = BE' = 0
AC. Hence, 2AF = AB—- A'B = AB — AC.

(Remark: Let PA be the tangent at A with P inside the sector of ZQAE. As AB > AC,
we have Z/C > /B. Hence, /PAB = /C > /B = ZQAP. This implies that F is on the
arc AB not containing C. Also, /EBF = /PAE < /EAB so that BF > AF. Hence, A’
is between F' and B.)

1.2. The problem can be changed to find all integers m such that 5™ 4 12™ is a perfect
square. Again the only answer is m = 2. We shall give the solution in this more general
case. (The solution of the original problem is easy by considering mod 5 or mod 10.)

One solution is p = 2 and we assert that it is the only solution. If p = 2k + 1 is odd, then
52k+1 4 192k+1 = 92k+1 = 9 .4k = 2(—1)¥ = 2 or 3 (mod 5). However the square of an
integer can only be 0,1 or 4 (mod 5). So 5P 4+ 12P is not a square when p is odd.

Now suppose that 52" + 122" = ¢2 with n > 2. Then

520 =42 — 1227 = (t — 12") (¢t + 127).

If 5 divides both factors on the right, it must also divide their difference which means it
divides 12. But this is impossible. Thus ¢ — 12" =1 and

520 =2.12" 41 or 22FIgn = (5" —1)(5" +1).

If nis odd, then 3 | 5" +1 and 3 15" — 1. Thus 5" +1 = 2-3" and 5" — 1 = 4" which cannot
hold for n > 1. If n is even, then 5 — 1 =2-3" and 5" 4+ 1 = 4", which again cannot hold
for n > 2. Thus there is no solution for p = 2n, n > 2.

1.3. 1st solution by Tan Chee Hau
We shall prove the assertion using induction on n. Let x1,x2,...,z, be the coordinates of
the n red points on the real line. Similarly, let 41, ys, ..., Yy, be the coordinates of the n blue
points on the real line. Let A,, be the sum of distances of points of the same colour, B,, the
sum of distances of points of different colours. If n = 1, then Ay = 0 and By = |x1 — 31|
Clearly, By > A;. Now suppose B,_1 > A,_1.

n n

Ap —Apa = Z(an — i)+ (yn — ¥i) = Z(wn = ¥i) + (yn — i)
i=1 i=1

n
Bn —Bp-1 = ‘xn - yn| + Z ’xn - yi’ + |yn - xz|
i=1
Hence, B,,—Bp_1 > A,—A,_1. It follows from this and induction hypothesis that B,, > A,.

2nd solution by Lim Yin
Take 2 consecutive points A and B with the coordinate of A less than the coordinate of B.
Suppose that there are k blue points and [ red points with their coordinates less than or



equal to the coordinate of A. Then the segment AB is covered (n — k)k + (n — 1)l times by
segments whose endpoints have the same colour, and (n — k)l + (n — 1)k times by segments
whose endpoints have different colours. Since (n — k)k 4+ (n — 1)l < (n — k)l + (n — 1)k, the
assertion follows by summing the lengths of all these segments over all pairs of consecutive
points.

3rd solution by Julius Poh

Let S be the total length of the segments whose endpoints are of the same colour and D be
the total length of the segments whose endpoints are of different colour. Move the leftmost
point to the right by a distance . Then S decreases by (n — 1)z while D decreases by nax.
Thus D decreases more than S. Continue to move this point until it hits the next point.
If these two points are of different colour, then deleting them causes S and D to decrease
by the same amount. If they are of the same colour, then continue to move the pair to
the right and in the process D decreases more than S does. We continuing this process,
when the block that we are moving (all points in the block are of the same colour) hits a
point which is of different colour, remove a pair of points of different colour. If it hits a
point of the same colour, then add the point to the block and continue moving to the right.
Eventually all the points will be removed and both S and D have decreased to 0. Thus at
the beginning D > S.

2.1. 1st solution

Let x =y = 1. We have f(0) =0. Let a = x +y and b = z — y. Then the given functional
equation is equivalent to bf(a) — af(b) = (a® — b?)ab. This holds for all real numbers a and
b. For nonzero a and b, this can be rewritten as

M a2—@—b2.

a b

Hence, for any nonzero real number z, @ — 22 = f(1) = 1. Let a = f(1) — 1. We have
f(z) = 23 + az, for all x # 0. As f(0) = 0, we thus have f(z) = 23 + ax for all z € R.
Clearly f(z) = 2 + ax satisfies the given relation.

Y
2.2. Set up a coordinate system with C'A on the z- B
axis and C' = (0,0). Let A = (a,0) with a > 0, F
—(1,0),D = (4, ¥%3), and E = (3, ¥3). Then,
B=(2_, Vda ) and D B
2(a—1)"2(a —1) u
1 —1 °
B = o1 60 .
2(1—a+a?)’2(1 —a+a?) c F A

Hence, DF = 1,DA? = (% —a)?+2=1—-a+a? and

[N

a(l + a) . 1)2 + ( \/ga(a B 1) . @)2 1

DM? = (——— "7 -
(2(1—a+a2) 2 21 —a+a?) 2 l—a+a?

2nd solution by Tay Kah Keng

Since DFE is parallel to CA, ADEB is similar to AFAFE so that DB : DE = FE : FA.
As CDEF is a rhombus, we have DE = FE = DF. Hence, DB : DFF = FD : FA.
Also, /ZBDF = Z/DFA = 120°. This shows that ABDF is similar to ADF A. Therefore,



/DFB = /FAD. This implies that ADMF is similar to ADFA. Consequently, DF? =
DM - DA.

2.3. Let f(n) be the given sum. The summands that appear in f(n) but not in f(n — 1)
are those of the form a, = 1/pn where 1 < p < n, (p,n) = 1; the summands in f(n — 1)
but not in f(n) are those of the form b, = 1/p(n — p) where 1 <p <n—p, (p,n —p) =1,
equlvalently (p,n) = 1. (For example, if n = 10, those summands in f(10) but not in f(9)
are 1o, 5970+ 719> 9ogg, While those which are in f(9) but not in f(10) are 115, z=.)
Hence summing only over values of p such that (p,n) = 1, we have

f(n)—fn-1) Zap Z b, = Z(ap—i—an_p—bp).

p<n 2p<n 2p<n

But a, + an—p — bp = 0; hence f(n) = f(n — 1) for all n > 3, and the result follows.

2000/2001

1.1 It suffices to prove that the product of two differences of two squares is also a difference
of two squares. Let a = 22 —y? and b = 72 — 2. Then, ab = (z —y)(r — s)(z +y)(r +s) =
(xr +ys —yr — xs)(xr +ys +yr +xs) = (xr +ys)? — (yr + xs)>

There is another characterization of a difference of two squares. Namely, a positive integer
n is a difference of two squares of positive integers if and only if n # 1,2,4, and n # 2
(mod 4). The result also follows from this characterization.

1.2. Let K and L be points of intersection of
the line BC with the lines AM and AN re-
spectively. Suppose that the line BC is the
z-axis of a coordinate system with origin B,
and let ¢, p, ¢, k and [ denote the x-coordinates
of C, P,Q, K and L respectively.

The point K is on the radical axis of the circumcircles of APAB and AQAC, hence its
powers k(k — p) and (k — q)(k — ¢) with respect to these two circles are equal. It follows
that k = cq/(c+ ¢ — p). Similarly, we have [ = ¢p/(c+ p — q), interchanging the roles of p
and gq. We easily find that [ = k if and only if p + ¢ = ¢ and the result follows.

1.3 Each time a player loses a match, he has to wait six games before his turn comes again.
If « is the number of games before his first turn, then the player will win if x + 7r 47 = 37,
where r > 0 is an integer and 0 < x < 6. Here r counts the number of times he lost. From
this, we obtain x = 2 and » = 4. Thus the second player in the queue wins. That is P,
wins.



2.1. Let G be the point on C'E such that DG is parallel to
BE. Then ZEBD = /GDC. Also EG/GC = BD/DC. A
Note that AADEF is similar to ADCE. Then,

FE/FD = BD/DC

< EG/GC=FE/FD

<— AADF is similar to ADCG

< /DAF = /GDC EG
< /DAF = /EBD B AF "\ ¢
<~

AF1BE. D

2nd Solution Let A = (0,a),B = (-=b,0),C = (¢,0),D = (0,0), E = (z,y), F = (tz,ty),
where a,,b,c,t > 0. DELAC implies that (x,y) = (sa, sc) for some s. E lies on AC implies
that s = ac/(a? + c?). Hence, x = a’c/(a? + c?) and y = ac?/(a® + ¢?).

Then,

AF1BE

(tz,ty —a) - (x+b,y) =0

te? +teb+ty? —ay =0

e+ RS+ oy — A =0
ta?c+tb(a® + ) +tc3 —c(a®? + ) =0
—a?e(l1—t) — (1 —t) +tb(a® +c*) =0
(a? + A)tb = c(1 — t)(a® + ¢?)
bje=(1-1t)/t

BD/DC = FE/FD.

rreeeoee

2.2 For n > 6, take x5 = Tp—4 = Tp-3 = Tp—2 = Tp—1 = 1/2 and z, = 1 and zero
for other z;. Then the left hand side of the inequality is 9/4, while the right hand side is
5/2. So the inequality is not valid for n > 6. We shall prove that the inequality holds for
n =2,3,4,5. The cases n = 2 and 3 can be verified easily. Let’s consider the case n = 5.
(The case n = 4 can be proved in a similar way.) The inequality to be proved is equivalent
to

2% — (21 + 2o + 23 + 24)25 + (07 + 23 + 23 +27) > 0.

Regard this as a quadratic equation in z5. It suffices to prove that its discriminant is less
than or equal to zero. The discriminant is equal to (z1 +xa+ 23 +x4)? — 4(2} + 23 + 23 +29)
which can simplified to —[(z1—x2)%+(z1—23)?+(21—24)*+ (22— 23) %+ (T2 —24)?+ (23— 74) ).
It is obviously less than or equal to zero.

2.3 If n is a prime-power p®, where p is a prime and « is a positive integer, then L(n) =
pL(n —1) since p®~! < n ensures that p*~! divides L(n —1). On the other hand, if n is not
a prime-power, it is greater than every prime-power which divides it, so L(n) = L(n — 1).
Thus L(n) = L(n — 1) if and only if n is not a prime-power.

(i) We shall prove that there are arbitrarily long sequences of consecutive positive integers
with the same value of L(n). For any n, let P(n) be the product of all distinct primes
p <n. If 2 <r <n, then r divides L(n), so L(n)P(n) 4 r is a multiple of . However, it
is not a prime-power, for if p® is a maximal prime-power factor of r, then p®*! is a factor
of L(n)P(n), so that L(n)P(n) + r is greater than r but has p® as a maximal prime-power
factor. Therefore, {a, = L(n)P(n)+r : 1 <r <n} is a sequence of n consecutive positive
integers with the same value of L(ay). Now take n = 2001.



(ii) We know that m + 1,m + 2,m + 3 are all prime powers. One of them is a power of 2
and another is a power of 3 and they must be adjacent. Since the equation

2 4+1=3Y (1)
has two solutions in integers, (z,y) = (3,2),(1,1) and the equation
27 _ 1 =3 2)

has the solution (x,y) = (2,1). By examining L(1), ..., L(11), we see that the only solutions

are:
m=1,2,6.

[(1) has solutions (x,y) = (3,2),(1,1). Assume that x > 3. As 3¥ — 1 = 2% = 16(2%7%) is
divisible by 16, it implies that y = 0 (mod 4). Write y = 4k. Thus 3** — 1 = 81%F — 1 =
80(81%~1 4+ 81%=2 4-... 4 1) which is not a power of 2.

(2) has a solution (z,y) = (2,1). Now assume that y > 1. Then 2 — 1 is divisible by 9.
This implies that  must be even. Write x = 2z;. Then 2% = 4%1. For 4”1 =1 (mod 9), we
have 21 = 3k. Thus 2% — 1 = 64F — 1 = 63(64*~1 4- 642 + ... + 1). Thus it cannot be a
power of 3.]



2001/2002

1.1 Suppose XY = XB. Then XY? = B X

XB?* = XC - XA so that XY : XC = c

XA : XY. This shows that AXCY is sim-

ilar to AXY A. Hence /ZEDY = /XAY =

/XYC. Therefore, XY is parallel to DE. )
E

The converse is similar.

1.2 Use Induction. We can prove by induction that O, = 22"~! —2"~1 and E,, = 2?1 4+
27~1 We merely have to note that

On+1 = En + 30n7 En+1 = 3En + On

2nd Solution Using generating function:

Let y; = x9;_1x9;. Then S, = y1 + -+ + yn. There are three ways for each y; to be 0 and 1
way for it to be 1. Thusif f(z) = (34+x)™ = >_ a;z;, then a; is the number of sequences with
Sy =1. Thus O, = a;+az+--- = [f(1)—f(—1)]/2 and E,, = ap+az+--- = [f(1)+f(—1)]/2.
The result thus follows.

3rd Solution Direct computation:
Let y; = x2i—122;. Then S,, = y1 + - - - + yn. There are three ways for each y; to be 0 and 1
way for it to be 1. Thus

__ on—1 n n—3 n n—>5 n
0n=3 <n_1>+3 (n_3>+3 (n_5>+
En:n n—2 n n—4 n
AR

From here we have E,, + O, = (14 3)" and E,, — O,, = (3 — 1)". The result then follows.

1.3 We show more generally that ak? + bk + ¢ = 0 (mod 2") has a solution for all n
whenever b is odd and a or ¢ is even. For n = 1, take £k = 0 if ¢ is even and k = 1
if ¢ is odd. Now suppose the claim is true for all n. If ¢ is even, then, by assumption,
the congruence 2at? + bt + ¢/2 = 0 (mod 2") has some solution t. Letting k = 2t we get
ak? + bk +c = 2(2at? + bt +¢/2) =0 (mod 2"*1). If ¢ is odd, then a is even, so a +b+c is
even; hence, by assumption, the congruence 2at? + (2a + b)t + (a +b+¢)/2 =0 (mod 2")
has some solution ¢. Letting k = 2¢ 4 1 yields

ak® + bk + ¢ = 2[2at* + (2a + b)t + (a +b+¢)/2] =0 (mod 2"1).
Thus, whether ¢ is even or odd, the claim is true for n + 1, and so by induction for all n.

2nd Solution by Tan Kiat Chuan, Tay Wei En Joel, Leung Ngai-Hang Zachary,
Kenneth Tay

It suffices to show that 2k% + 2001k + 3, &k = 0,1,---,2” — 1 forms a complete residue
class modulo 2. Suppose there are distinct integers k1, ko, 0 < k1, ko < 2" — 1 such that
2k? + 2001k1 + 3 = 2k2 + 2001kg + 3 (mod 27). That is (k3 — k2)(2k1 + 2k — 2001) =



(mod 2™). Since 2k + 2k2 + 2001 is odd, we must have 2" divides k; — ka. Thus k1 = ko
mod 2"). Since 0 < ki, ko < 2" — 1, we have k; = ko. Therefore, 2k + 2001k + 3
k=0,1,---,2" — 1 forms a complete residue class modulo 2".

2.1 The inequality can be written in the form

o3+ 23 + a3

x%+x%+x§)%<( Tt
- 3

( 3
This is known as the Power Mean Inequality. There are several proofs of this inequality.
First recall Holder’s inequality: Let p, g be real numbers such that p,q > 1 and % + % =1

Then for any 2n positive real numbers a1, b1, ..., an, by,
n n 1 n 1
Y aibi < (Q_at)r (Q_b))e.
i=1 i=1 i=1

Inourcase,takepz&q:%,n:?), a1 =as =az =1 and by = 22, by = 23, blzxg. We
then have
x? + 22+ o2 SS%(x“i’—Fx%—i-xg)%.
That is
(2 +as+ a3
(23 + a3 +a23)2 —

Alternatively, Consider the function f(x) = 2% forz > 0. [ (x) = % > 0 for z > 0. Hence,
f is concave upward. By Jensen’s Inequality, for any three positive numbers z1, 29, 23,
F (21 +22+23> < ) + f(z2) + f(2)
3 - 3

Now take 21 = 22, 29 = 22 and z3 = 2. We have
1 1y <2 2 3 3

[V

(x%Jr:C%wL:c%) < z3 + 23 + 23
3 - 3 '

That is
(22 + 23 + 23)3
(23 + 23 + 23)?

< 3.

2nd Solution by Lim Yin
The given inequality is equivalent to

[2§ + 20323 — 3ztad] + [2§ + 22303 — 3xtad] + (2§ + 22323 — 32322
+Ha8 + 20328 — 3x323] + [ + 222} — Baga] + [2§ + 22323 — 323a3)]
+[22323 + 22303 + 22323 — 6232323) > 0.
Each term in the square brackets is non-negative by the AM-GM inequality. So the result
follows.

3rd Solution by Leung Ngai-Hang Zachary
The given inequality is equivalent to:

22323 + 22323 + 22323 — 6222322) + [28 + 2§ + 40323 — 32iad — 32
+[28 + 2§ + 42323 — 3xtad — 3232d] + [2§ + 28 + 42323 — 32323 — 3232d] > 0.



The first term is nonnegative by rearrangement inequality. The next three can be shown to
be nonnegative by using rearrangement inequality as follows:

(21 + 23) + a3(a3 + 1) + 22§23

(2329 —|— xlmQ) + x2(:1:1$2 + :):11'2) + 2233
x?zz + zizd + zi2d + 2225 + 2561:1:2

(28 12 + wlxg) + (2123 + 2323) + 2tad + 222d
3ziz3 + 3x3a].

o} +af +daiad = a3
1

I I\/ ||

AV

Alternatively,

6 6 3.3 6 3.3 3..3 6 3.3 3.3 4.2 2. 4
fIf]_ + x2 —+ 4.%'1332 = (331 + x]_xQ + xle) + (x2 + 3:'1.%'2 + 1'1.%'2) Z 3(171372 =+ 33:'1.%'2.

2.2 Suppose r is not an integer, choose an integer a such that ar # |ar| > 1. (Note that
r > 0. If r is irrational, choose any large positive integer a. If » = p/q is rational, choose a
large positive integer a such that (a,q) = 1.) Let k be the unique integer such that

S <ar—lar] < =
k+1~ k
Then o
1< (k+1)(ar — |ar]) < % <2.
Since

|(k+ Dar| = (k+1)|ar] + [(k+1)(ar — |ar])| = (k+1)|ar] + 1

we see that |ar| does not divide |(k + 1)ar]. Thus m = a, n = (k + 1)a form a counter
example.

2nd Solution by Charmaine Sia

Suppose that r is not an integer. We may assume r > 1. (If 0 < r < 1, we may choose a
positive integer p such that pr > 1 and pr is not an integer. Then consider ' = pr.) Now
choose a positive integer m such that k + % < mr < k+ 1 for some positive integer k > 1.
Then |mr| =k and |2mr| = 2k + 1. Thus |mr]| does not divide |2mr].

3rd Solution by Tan Weiyu Colin
Given r, choose m € N so that mr > 10 and mr € N. Let mr = a+ 7 10] + 1571 Where j € N,

a = |mr] > 10, b is a positive integer less than 10 and x is a nonnegative real number, also
less than 10. Let k = 107 and n = mk. Then |mr| = a, |nr| = ka+b and |mr| = at [nr].

2.3 Fixany z > 0. Let fl%) = z and fll(z) = f(z). Forn > 1, let f(z) = f(f*~U(z)).
Then the above functional equation gives

2 () + fr () = 1240 ().
Solving this difference equation, we have
fMl(z) = 013" + Cy(—4)".

Using the initial conditions fl%(z) = z and fl!(z) = f(x), we have C; = (f(x)+4x)/7 and
Cy = (3z — f(x))/7. Therefore,

F(a) = 2 (@) +40)3" + (30 — f(@)) ()"



Since f(z) > 0, fI"l(z) > 0 for all n > 0. By taking n even, we have %(f(x) + 4x)3" +
1(3z — f(z))4™ > 0. From this, 3z — f(z) > 0. By taking n odd, we have 1(f(z)+4z)3" —
;(3;1: — f(x))4™ > 0. From this, 3z — f(x) < 0. Consequently, f(z) = 3z. One can easily
verify that f(x) = 3z satisfies the given functional equation.

Alternatively, suppose for some a, f(a) = 3a + ¢ where ¢ € R. Then f"(a) = 3"a + kyc.
One can obtain a recurrence relation in k, and use it to prove that ¢ = 0. Finally check

that f(z) = 3z satisfies the given condition.
2002/2003

1.1 Take n = 10?22 — 3. Then

(102 - 3)> =10"** - 6-10** +9= 9.--9 40---09.

221 nines

The sum of the digits of n? = 222 x 9 + 4 = 2002.

1.2 This is in fact the Butterfly Theorem. There are many proofs of this result. See the
discussion on page 45 in Geometry Revisited by Coxeter and Greitzer. Here we give two
proofs.

First, apply sine rule to
ANCMP,

MP CP

sinac sin(y+6) (1)

Apply sine rule to AEM P,

MP  EP
sin 8 " sin® 2)
: M P? CP-EP
(1) > (2) gives sinasing sin(y + 0) sinf’ - @)
QM QD
For AQDM, sin3  sin(y+6) - @
For AQFM, QM _ QF - (5)

sina  sinf’

QM*> QD-QF
sinasin  sin(y +6)sind’

(4) x (b) gives

CP-EP QD-QF
MP2  QM?

By (3) and (6),

This implies (MP + AJ‘Q g‘j P—AM) _(QM + Az\g\(gM — AM).

MP? — AM?*  QM? — AM?

Or equivalently, M P2 QM?

That is MP=QM.



Second solution Set up a rectangular coordinate system with M as the origin and QP as
the x-axis. Let the equation of the circle be 2% + (y+¢)? = r%. Let the coordinates of C, D,
F and E be (p1,ap1) and (p2, ap2) (q1,bq1), (g2, bge), respectively. Direct calculation shows
that the z-intercept of C'E at the point P is p1ga(b—a)/(bga—ap1) and the z-intercept of DF'
at @ is p2q1(a—0b)/(ap2 —bqy). 1t suffices to verify that p1ga/(bgz —ap1) = p2q1/(ap2 —ba1).
This equation can be rearranged to

ap1p2(q1 + q2) = bq1g2(p1 + p2). (*)

The line CD has equation y = ax. Thus the z-coordinates of C' and D are the roots of the
equation z? + (ax + ¢)?> = r?. That is p; and po are the roots of the quadratic equation
(14+a?)z? +2acx+ (c? —r?) = 0. Similarly, ¢; and go are the roots of the quadratic equation
(1+b?)2? + 2bcx + (c2 —r?) = 0. Using the relations between roots and coefficients, we have
p1 +p2 = —2ac/(1+ a?) and p1pe = (2 — r?) /(1 + a?). Similarly, ¢ + g2 = —2bc/(1 + b?)
and q1q2 = (2 — r?)/(1 + b?). With these, (*) can be easily verified.

1.3 If max; min; a;; = min; max; a;; = aqg, then clearly a,g is at once the largest number
in the ath row and the smallest numbers in the Sth column, and hence

aaj < Gag < a;g for all i # a and for all j # 3. (%)

Conversely, if (*) holds for some aqg, then min; a;; < aqj < aqg for all j # § and max; a;; >
a;3 > aqp for all © # o would imply that max; min; a;; = a,3 = min; max; a;;. To obtain a
required configuration, it is therefore necessary and sufficient to choose any 2n — 1 of the
given n? numbers, say x1 < T3 < --- < ZTo,—1. Put z, anywhere in the array. Then put
T1,%2,...,Tp—1 in the same row as x, and put £n41,Tpi2,...,To,—1 in the same column
as T,,. The remaining n? — 2n + 1 numbers can be used to fill up the remaining n? — 2n + 1
positions. Therefore, the total numbers of such configurations is

(n?)!(n!)?

( g )'”2'[<n—1>!12-<n2—2”+1>‘:<2n—1)!‘

2n —1

2.1 The answer is 290. First observe that the arithmetic sequences {p + mk,k € N} and
{q+nk, k € N} are disjoint if and only if p — ¢ # In — km for all integers k, [, which holds if
and only if ged (m,n) does not divide p — g. Therefore, the required r cannot be relatively
prime to 10 = (2)(5), 26 = (2)(13) and 29. We start by choosing 7 to be the smallest
lem of dy, ds, ds where di,ds, ds are factors (greater than 1) of 10, 26 and 29 respectively.
The smallest such 7 is 58 = (2)(29). In this case, ged (10,58) = 2, ged (26,58) = 2 and
ged (29,58) = 29. We also require b — 3 # 0 (mod 2), b —6 # 0 (mod 2) and b—5 #Z 0
(mod 29). But there is no solution for b from the first two equations. Therefore we cannot
take r = 58. The next smallest lem would be 290 = (5)(2)(29). In this case, a simple
checking using the above criterion shows that {1 + 290k, k € N} is disjoint from A

2.2 Let the radius of I be 1 and the radius S

of the inscribed circle be r9 and its center be P
F. First we have PB? = AB - BM because r
AAPB is similar to APMB.

Using Pythagoras’ Theorem, RO? = FO? —

FR? = (r1 — 1) —r2 =12 — 2riry = AO? — 4 O R M P
2A0 - RM.




Thus, AO? — RO? = 240 - RM = AB - RM. Therefore, AB- RB — RB?> = AR - RB =
AO? — RO?> = AB - RM. From this, we have AB - (RB — RM) = RB?. Therefore,
PB%?=AB-BM = AB - (RB — RM) = RB? and so PB = RB.

Note that since /ZPAM = /BPM, we have PB = RB if and only if /BPR = /BRP
if and only if ZAPR = /M PR if and only if PR bisects ZAPM. With this observation,
if we inscribe another circle in the curvilinear triangle PBM touching M B at a point
R’, then ZRPR' = 45°. Note also that S,Q, B are in fact collinear. Using this, we can
obtain another solution as follow. Let the extension of PM meet the circle at M’. Then
BR? = BQ - BS = BQ? + BQ - QS = BQ? + PQ - QM' = BQ? + (PM — MQ)(M'M +
MQ) = BQ? + (PM — MQ)(PM + MQ) = BQ?> + PM? — MQ? = MB? + PM? = PB.
There is an even shorter proof due to Colin Tan. The fact that S, Q, B are collinear gives
LASQ = 90°. Thus AABS is similar to AQBM so that AB/BS = BQ/BM. Therefore,
PB? = AB-BM = BS - BQ = BR?.

2.3 Replacing m by f(f(m)), we have

FUFm) + f(f(n) = = f(f(F(f(m)) +1)) —n. (1)
Interchanging m and n in (1), we get
FUFm) + f(f(n) = = f(f(F(f(n)) +1)) —m. (2)

Put m = 1 in the original functional equation and denote for simplicity f(f(2)) by k. We
obtain f(f(f(n))+1) = —k —n. Using this and equating (1) and (2), we get f(—m — k) —
f(=n—k) =m—n. Lettingm = —p+k and n = —p+k+1, we have f(p)— f(p—1) = —1.
Inductively, we obtain f(p) = f(0) —p. Thus, f(f(p)) = f(f(0)—p) = f(0)—(f(0)—p) = p.

Substituting this into the original functional equation, we have f(m+n) =—-m—1—n. In
other words, f(n) = —n — 1 for all n. Indeed, f(n) = —n — 1 satisfies the given functional
equation.

(2nd solution by Teo Wei Hao) Setting m = 0, we obtain f3(n) = —f?(1) — n. This
functional relation immediately shows that f is bijective, because f (f? ) —f2(1) —n
and f(p) = f(q¢) = f3(p) = f3(¢) = p = ¢. Now we may let f(n ) = 1 for some ny.
The original functional equation becomes f(m + 1) = —f%(m + 1) — ng. Using the fact

that f is bijective, we may let f(m + 1) = z, so that f(z) = —x — ng. Applying this on
f?(ng) = 1 gives ng = 1. Therefore, f(z) = —2 — 1.

(3rd solution by Colin Tan) Let f2(1) = ¢. Put n = 1, m = 0 and replace n by f(n), we
get, respectively,

fm+c) = —fFm+1)-1 (1)
f3(n) = —c—n (2)
flm+f2(n) = —f(m+1)~ f(n) 3)
From (1) and (3), we get
flm+c)+1=f(m—c—n)+ f(n) (4)

Put n = —2¢+ 1 and replace m by m + 1 — ¢ in (4), we get

fm+1)+1=f(m)+ f(—2c+1).



Thus f is linear. Write f(z) = az + b and from the original equation, we get a = b = —1.
Thus f(z) = —x — 1. From the above computation, we see that this function satisfies the
original functional equation.
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1.1 Let M = z(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+T7), where x is a positive integer.
Then M = (2% 4 7x)(2? + 72 + 6) (2% + Tz + 10) (2% + 72 + 12). Let a = 2> + T2 + 6 =
(r4+1)(x+6) >2x7=14. Thus M = (a—6)a(a+4)(a+6) = a*+4a(a+3)(a—12) > a®.
Also (a4 1)* — M = 42a® + 148a + 1 > 0. Therefore, a* < M < (a + 1)*. Consequently,
|IN| = LMiJ =a = (z+ 1)(x + 6) which is an even integer.

1.2 Let the intersection of AD, BE, CF
with BC, CA, AB be D', E', F' respec-
tively. It is easy to establish that ZFAF’ =
/EAE = «, FBF' = /ZDBD = g,
/DCD' = /ZECE' = ~. Also AE = AF =
xz, BFF = BD =y, CD = CE = z. The
ratio AF'/F'B equals to the ratio of the al-
titudes from A and B on CF of the trian-
gles AFC and BFC and hence as the ratio
of their areas.

AF"  AreaAAFC  zACsin(ZA+ a)
F'B AreaABFC  yBCsin(/B+f)

Therefore,

BD'  yABsin(ZB+ ) 4 CE'  zBCsin(£ZC +7)

D'C  zACsin(£C +7) WCEAT 2AB sin(ZA+a)’

Similarly,

AF' BD' CFE'

It fOHOWS that B TCW

=1, so by Ceva’s Theorem, AD, BE and CF are concurrent.

1.3 The integer pair (x,y) is a solution of the given equation if and only if x +y = 0 or
(z,y) = (0£1), (£1,0), or +(2,2). Clearly, if z +y = 0, then (x,y) is a solution. Assume
now that (x,y) is a solution with =z +y # 0.

We first show that 2y > 0. Dividing both sides of 2° + y° = (z + y)? by z + y yields

ot =2ty + oy —ay’ oyt = (e y)t
This is equivalent to
(2* +9°)? + 2%y® = (2 + y)*(xy + 1),

and it follows that xy > 0.

Next we show that |z + y| < 4. The convexity of the function f(t) = t® on [0,00) implies
that for nonnegative x and y,

5.5 5
1
x —;—y > (:E—;—y) , or equivalently, z° + 3% > — (z +y)°.

16




If  +y > 4, then 2° + ¢y° > (x + y)3. Similarly, if  and y are both nonpositive with
T +y < —4, then ° + % < (z +y)3.

Finally, examining the cases where xy > 0 and |x + y| = 1,2,3 or 4, we find the solutions
(z,y) = (0£1), (£1,0), or £(2,2).

2.1 We have to show that ei-
ther AB is parallel to CD or A
AD is parallel to BC. Us- H H H D

ing the powers of H nd K re-
spective to the circle, we have
HB? = HA-HD = 2HA? and
KA? = KB - KC = 2KB2

Thus HB/HA = KA/KB. , ,
K ' B i C

Note that ZHBA = ZKAB. Applying sine rule to triangles ABK and BAH, we obtain
KA/KB = sin(£LABK)/sin(/KAB) and HB/HA = sin(/HAB)/sin(£HBA). Thus
sin(ZABK) = sin(ZHAB). Therefore, either ZABK = /HAB or ZABK + /HAB =
180°. Consequently, AB is parallel to CD or AD is parallel to BC.

2.2 The smallest such value of k is 1/4. First note that for x,y > 0,

1 _day 1 _(z4y? 1 _1(1 1)
r4+y x4y dry - (x+y) 4daxy 4\z y/)’
ab be ca

with equality if and only if x = y. We then have P + TP + crat 2

<ab< 1 n 1 >+bc( 1 n 1 >+ca( 1 n 1 ) 1( +b+)
— = - = "(a ¢
~ 4 \a+c b+ec 4 \c+a b+a 4 \c+b a+b 4 ’

with equality if and only if a+b=b+4+c=c+a, thatisa =b=c.

2.3 Consider an n x n square lattice with M (n) black
points so that every square path has at least one black
point on it.

Let P be a black point in the lattice, and suppose S
is a 2 x 2 square path that passes through P. Assign
P a “credit” of % if S passes through exactly k black
points. Let T'(P) be the sum of all credits assigned
to P as S varies over all 2 x 2 square paths that pass
through P.

Note that the sum of T'(P) as P varies over all black
points in the square lattice is (n — 1)? since each of e
the (n — 1)? two by two square path contributes 1 to

the total.
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It is clear that T'(P) < 1if P is at a corner, and 7'(P) < 2 if P is on an outer edge. Suppose
P is a point in the interior of the lattice. It lies on exactly four 2 x 2 square paths, and there

must be at least one black point on the 3 x 3 square path surrounding P. Thus, for such a P,
T(P) < 7/2. Therefore, in all cases, M (n) > (n —1)2, or equivalently, 2(n —1)? < M (n).



On the other hand, the pattern shown in the figure for a 7 x 7 lattice (2/7 of the points are
black and every square path passes through a black point) can be extended to an arbitrary
n x n lattice by tiling an m x m lattices, m = 7[n/7], with copies of the lattice in the figure,
and then removing (m — n) rows and columns from the top and left respectively, so that
the number of black point is less than or equal to %nz.



