Problem 4. Consider the sequence \(a_1, a_2, \ldots \) defined by

\[
a_n = 2^n + 3^n + 6^n - 1 \quad (n = 1, 2, \ldots).
\]

Determine all positive integers that are relatively prime to every term of the sequence.

Problem 5. Let \(ABCD \) be a given convex quadrilateral with sides \(BC \) and \(AD \) equal in length and not parallel. Let \(E \) and \(F \) be interior points of the sides \(BC \) and \(AD \) respectively such that \(BE = DF \). The lines \(AC \) and \(BD \) meet at \(P \), the lines \(BD \) and \(EF \) meet at \(Q \), the lines \(EF \) and \(AC \) meet at \(R \). Consider all the triangles \(PQR \) as \(E \) and \(F \) vary. Show that the circumcircles of these triangles have a common point other than \(P \).

Problem 6. In a mathematical competition 6 problems were posed to the contestants. Each pair of problems was solved by more than \(\frac{2}{3} \) of the contestants. Nobody solved all 6 problems. Show that there were at least 2 contestants who each solved exactly 5 problems.