49th INTERNATIONAL MATHEMATICAL OLYMPIAD MADRID (SPAIN), JULY 10-22, 2008

Problem 1. An acute-angled triangle $A B C$ has orthocentre H. The circle passing through H with centre the midpoint of $B C$ intersects the line $B C$ at A_{1} and A_{2}. Similarly, the circle passing through H with centre the midpoint of $C A$ intersects the line $C A$ at B_{1} and B_{2}, and the circle passing through H with centre the midpoint of $A B$ intersects the line $A B$ at C_{1} and C_{2}. Show that $A_{1}, A_{2}, B_{1}, B_{2}$, C_{1}, C_{2} lie on a circle.

Problem 2. (a) Prove that

$$
\frac{x^{2}}{(x-1)^{2}}+\frac{y^{2}}{(y-1)^{2}}+\frac{z^{2}}{(z-1)^{2}} \geq 1
$$

for all real numbers x, y, z, each different from 1 , and satisfying $x y z=1$.
(b) Prove that equality holds above for infinitely many triples of rational numbers x, y, z, each different from 1, and satisfying $x y z=1$.

Problem 3. Prove that there exist infinitely many positive integers n such that $n^{2}+1$ has a prime divisor which is greater than $2 n+\sqrt{2 n}$.

