49th INTERNATIONAL MATHEMATICAL OLYMPIAD MADRID (SPAIN), JULY 10-22, 2008

Problem 4. Find all functions $f:(0, \infty) \rightarrow(0, \infty)$ (so, f is a function from the positive real numbers to the positive real numbers) such that

$$
\frac{(f(w))^{2}+(f(x))^{2}}{f\left(y^{2}\right)+f\left(z^{2}\right)}=\frac{w^{2}+x^{2}}{y^{2}+z^{2}}
$$

for all positive real numbers w, x, y, z, satisfying $w x=y z$.
Problem 5. Let n and k be positive integers with $k \geq n$ and $k-n$ an even number. Let $2 n$ lamps labelled $1,2, \ldots, 2 n$ be given, each of which can be either on or off. Initially all the lamps are off. We consider sequences of steps: at each step one of the lamps is switched (from on to off or from off to on).

Let N be the number of such sequences consisting of k steps and resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off.

Let M be the number of such sequences consisting of k steps, resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off, but where none of the lamps $n+1$ through $2 n$ is ever switched on.

Determine the ratio N / M.

Problem 6. Let $A B C D$ be a convex quadrilateral with $|B A| \neq|B C|$. Denote the incircles of triangles $A B C$ and $A D C$ by ω_{1} and ω_{2} respectively. Suppose that there exists a circle ω tangent to the ray $B A$ beyond A and to the ray $B C$ beyond C, which is also tangent to the lines $A D$ and $C D$. Prove that the common external tangents of ω_{1} and ω_{2} intersect on ω.

