

Language: English

Day:

1

Wednesday, July 15, 2009

Problem 1. Let *n* be a positive integer and let a_1, \ldots, a_k $(k \ge 2)$ be distinct integers in the set $\{1, \ldots, n\}$ such that *n* divides $a_i(a_{i+1}-1)$ for $i = 1, \ldots, k-1$. Prove that *n* does not divide $a_k(a_1-1)$.

Problem 2. Let ABC be a triangle with circumcentre O. The points P and Q are interior points of the sides CA and AB, respectively. Let K, L and M be the midpoints of the segments BP, CQ and PQ, respectively, and let Γ be the circle passing through K, L and M. Suppose that the line PQ is tangent to the circle Γ . Prove that OP = OQ.

Problem 3. Suppose that s_1, s_2, s_3, \ldots is a strictly increasing sequence of positive integers such that the subsequences

 $s_{s_1}, s_{s_2}, s_{s_3}, \dots$ and $s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, \dots$

are both arithmetic progressions. Prove that the sequence s_1, s_2, s_3, \ldots is itself an arithmetic progression.