Problem 1. Let n be a positive integer and let $a_{1}, \ldots, a_{k}(k \geq 2)$ be distinct integers in the set $\{1, \ldots, n\}$ such that n divides $a_{i}\left(a_{i+1}-1\right)$ for $i=1, \ldots, k-1$. Prove that n does not divide $a_{k}\left(a_{1}-1\right)$.

Problem 2. Let $A B C$ be a triangle with circumcentre O. The points P and Q are interior points of the sides $C A$ and $A B$, respectively. Let K, L and M be the midpoints of the segments $B P, C Q$ and $P Q$, respectively, and let Γ be the circle passing through K, L and M. Suppose that the line $P Q$ is tangent to the circle Γ. Prove that $O P=O Q$.

Problem 3. Suppose that $s_{1}, s_{2}, s_{3}, \ldots$ is a strictly increasing sequence of positive integers such that the subsequences

$$
s_{s_{1}}, s_{s_{2}}, s_{s_{3}}, \ldots \quad \text { and } \quad s_{s_{1}+1}, s_{s_{2}+1}, s_{s_{3}+1}, \ldots
$$

are both arithmetic progressions. Prove that the sequence $s_{1}, s_{2}, s_{3}, \ldots$ is itself an arithmetic progression.

