

Language: English

Day: 2

Thursday, July 16, 2009

Problem 4. Let ABC be a triangle with AB = AC. The angle bisectors of $\angle CAB$ and $\angle ABC$ meet the sides BC and CA at D and E, respectively. Let K be the incentre of triangle ADC. Suppose that $\angle BEK = 45^{\circ}$. Find all possible values of $\angle CAB$.

Problem 5. Determine all functions f from the set of positive integers to the set of positive integers such that, for all positive integers a and b, there exists a non-degenerate triangle with sides of lengths

a, f(b) and f(b + f(a) - 1).

(A triangle is *non-degenerate* if its vertices are not collinear.)

Problem 6. Let a_1, a_2, \ldots, a_n be distinct positive integers and let M be a set of n-1 positive integers not containing $s = a_1 + a_2 + \cdots + a_n$. A grasshopper is to jump along the real axis, starting at the point 0 and making n jumps to the right with lengths a_1, a_2, \ldots, a_n in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in M.