Problem 4. Let $A B C$ be a triangle with $A B=A C$. The angle bisectors of $\angle C A B$ and $\angle A B C$ meet the sides $B C$ and $C A$ at D and E, respectively. Let K be the incentre of triangle $A D C$. Suppose that $\angle B E K=45^{\circ}$. Find all possible values of $\angle C A B$.

Problem 5. Determine all functions f from the set of positive integers to the set of positive integers such that, for all positive integers a and b, there exists a non-degenerate triangle with sides of lengths

$$
a, f(b) \text { and } f(b+f(a)-1)
$$

(A triangle is non-degenerate if its vertices are not collinear.)

Problem 6. Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers and let M be a set of $n-1$ positive integers not containing $s=a_{1}+a_{2}+\cdots+a_{n}$. A grasshopper is to jump along the real axis, starting at the point 0 and making n jumps to the right with lengths $a_{1}, a_{2}, \ldots, a_{n}$ in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in M.

