

51st INTERNATIONAL MATHEMATICAL OLYMPIAD ASTANA (KAZAKHSTAN), JULY 2-14, 2010

Wednesday, July 7, 2010

Problem 1. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality

$$
f(\lfloor x\rfloor y)=f(x)\lfloor f(y)\rfloor
$$

holds for all $x, y \in \mathbb{R}$. (Here $\lfloor z\rfloor$ denotes the greatest integer less than or equal to z.)

Problem 2. Let I be the incentre of triangle $A B C$ and let Γ be its circumcircle. Let the line $A I$ intersect Γ again at D. Let E be a point on the arc $\widehat{B D C}$ and F a point on the side $B C$ such that

$$
\angle B A F=\angle C A E<\frac{1}{2} \angle B A C .
$$

Finally, let G be the midpoint of the segment $I F$. Prove that the lines $D G$ and $E I$ intersect on Γ.

Problem 3. Let \mathbb{N} be the set of positive integers. Determine all functions $g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
(g(m)+n)(m+g(n))
$$

is a perfect square for all $m, n \in \mathbb{N}$.

