

 ${\rm Language:} \ {\bf English}$

Day: 1

51st INTERNATIONAL MATHEMATICAL OLYMPIAD ASTANA (KAZAKHSTAN), JULY 2-14, 2010

Wednesday, July 7, 2010

Problem 1. Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that the equality

$$f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor$$

holds for all $x, y \in \mathbb{R}$. (Here |z| denotes the greatest integer less than or equal to z.)

Problem 2. Let *I* be the incentre of triangle *ABC* and let Γ be its circumcircle. Let the line *AI* intersect Γ again at *D*. Let *E* be a point on the arc \widehat{BDC} and *F* a point on the side *BC* such that

$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$

Finally, let G be the midpoint of the segment IF. Prove that the lines DG and EI intersect on Γ .

Problem 3. Let \mathbb{N} be the set of positive integers. Determine all functions $g \colon \mathbb{N} \to \mathbb{N}$ such that

$$(g(m)+n)(m+g(n))$$

is a perfect square for all $m, n \in \mathbb{N}$.

Language: English

Time: 4 hours 30 minutes.

Each problem is worth 7 marks.