51st INTERNATIONAL MATHEMATICAL OLYMPIAD ASTANA (KAZAKHSTAN), JULY 2-14, 2010
 51.

\qquad

Thursday, July 8, 2010

Problem 4. Let P be a point inside the triangle $A B C$. The lines $A P, B P$ and $C P$ intersect the circumcircle Γ of triangle $A B C$ again at the points K, L and M respectively. The tangent to Γ at C intersects the line $A B$ at S. Suppose that $S C=S P$. Prove that $M K=M L$.

Problem 5. In each of six boxes $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ there is initially one coin. There are two types of operation allowed:

Type 1: Choose a nonempty box B_{j} with $1 \leq j \leq 5$. Remove one coin from B_{j} and add two coins to B_{j+1}.
Type 2: Choose a nonempty box B_{k} with $1 \leq k \leq 4$. Remove one coin from B_{k} and exchange the contents of (possibly empty) boxes B_{k+1} and B_{k+2}.

Determine whether there is a finite sequence of such operations that results in boxes $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ being empty and box B_{6} containing exactly $2010^{2010^{2010}}$ coins. (Note that $a^{b^{c}}=a^{\left(b^{c}\right)}$.)

Problem 6. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive real numbers. Suppose that for some positive integer s, we have

$$
a_{n}=\max \left\{a_{k}+a_{n-k} \mid 1 \leq k \leq n-1\right\}
$$

for all $n>s$. Prove that there exist positive integers ℓ and N, with $\ell \leq s$ and such that $a_{n}=a_{\ell}+a_{n-\ell}$ for all $n \geq N$.

