35th International Mathematical Olympiad

Hong Kong, July 1994.

1. Let m and n be positive integers. let a1, as, ..., a,;, be distinct elements of {1,2,...,n}
such that whenever a; +a; < n for some 4,7, 1 <17 < j < m, there exists k, 1 < k < m,
with a; + a; = ax. Prove that

aitaxt-tam n+1

m 2

Soln. Without loss of generality, we may assume that a; > as > --- > a,,. We claim
that a; + amy1—¢ > n+ 1 for v = 1,...,m. The result then follows readily. To prove
the claim, we assume that on the contrary that it’s false. Thus there exists ¢ such that
a; + ama1—; <n+1Then a; < a; + anm, < a; + am—1 < -+ < a; + ama1—; < n. Thus

{ai + am,a; + am-1,...,a; + amy1-i} C{a1,a2,...,a;1}

which is impossible. Thus the claim follows.

2. ABC is an isosceles triangle with AB = AC. Suppose that

(i) M is the midpoint of BC and O is the point on the line AM such that OB is perpen-
dicular to AB;

(ii) @ is an arbitrary point on the segment BC' different from B and C;

(iii) F lies on the line AB and F lies on the line AC such that E, @ and F are distinct
and collinear.

Prove that OQ is perpendicular to FF' if and only if QF = QF.

Soln. First assume that OQ is perpendicular to EF. Now OFEB(Q abd OCF( are cyclic.
Hence ZOEQ = Z0BQ = Z0CQ = ZOFQ. It follows that QF = QF.

Suppose now that QF = QF and that the perpendicular through O to EF meet BC'
at Q" # Q. Draw the line through Q' parallel to E'F', meeting the lines AB and AC at E’
and F’, respectively. Then Q'E’ = Q'F’ as before. Let AQ’' meet EF at N. Then N # Q
and NE = NF, so that QF # QF, a contradiction. So Q' = Q.
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3. For any positive integer k, let f(k) be the number of elements in the set {k + 1,k +
2,...,2k} whose base 2 representation has precisely three 1s.

(a) Prove that, for each positive integer m, there exists at least one positive integer k
such that f(k) = m.

(b) Determine all positive integers m for which there exists exactly one k with f(k) = m.

Soln. Let g(k) denote the number of elements in the set {1,...,n} whose binary repre-
sentation has exactly three ones. Then f(k) and g(k) are both increasing and f(k) =
g(2k) — g(k). Hence

flk+1) = f(k)

9(2k +2) = g(k +1) — g(2k) + g(k)
= 9(2k +2) — g(2k) — [g(k + 1) — g(k)]

Since either both 2k + 2 is counted in g(2k + 2) and k + 1 is counted in g(k + 1) or neither
is. Thus f(k+1)— f(k) is either 1 or 0 depending on where 2k + 1 is counted in g(2k + 1)

or not. Since f(2") = ("’;“1) — (3) = (%), the image of f is NU{0}. This proves (a).

Let m be any positive integer for which there is only one k with f(k) = m. Then

f(k+1) = f(k) =1= f(k) — f(k—1).
The former means 2k + 1 is counted in g(2k + 2), or equivalently, the binary representation

of k has exactly two ones. The same holds for kK — 1. This happens only when the last two
digits of k — 1 are 01. In other words, k = 2" + 2. But

F2"+2) = g(2" +4) — g(2" + 2)
=1+g(2"" —g(2")

()

Thus the answer is any number of the form 1 + (g), n > 2.

4. Determine all ordered pairs (m,n) of positive integers such that

nd+1
mn — 1

is an integer.

Soln. Note that mn — 1 and m? are relatively prime. That mn — 1 dividing n3 + 1 is
therefore equivalent to mn — 1 dividing m3(n3 + 1) = m3n® — 1 +m3 + 1, which is in turn
n3—|—1
n2—1

if and only if n = 2. We now consider the case m > n. If n =1, % is an integer. This is

so if and ly if m = 2,3. Suppose n > 2. Note that n>+1 =1 (mod n) while mn—1= —1

equivalent to mn —1 dividing m?+1. If m = n, we have =n+ ﬁ This is an integer
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(mod n). Hence % = kn — 1 for some positive integer k. Now kn—1 < Zgﬂ =n+ ﬁ

2 __
or (k—1)n < 1+ 2. Hence k = 1, so that n® + 1 = (mn — 1)(n — 1). This yields

n—1

m = % =n+1+ %, which is an integer if and only if n = 2, 3. In each case, we have
m = 5. In summary, there are 9 solutions, namely

(2,2),(2,1),(3,1),(5,2),(5,3),(1,2),(1,3),(2,5),(3,5)

the last 4 obtained by symmetry.

5. Let S be the set of real numbers strictly greater than —1. Find all functions f : S — S
satisfying the two conditions:

(i) flz)+ f(y) +2f(y) =y + f(z) +yf(x) for all z and y in §;

(ii) @ is strictly increasing on each of the intervals —1 < x < 0 and 0 < x.

Soln. Conditionm (ii) implies that f(x) = z has at most three solutions, one in (—1,0),
one equal to 0 and the third in (0, c0).

Suppose f(u) = u for some u € (—1,0). Setting z =y = w in (i), we get
fu? 4 2u) = u? 4 2u € (—1,0).

This means u? + 2u = u. But then u € (—1,0). The case f(v) = v for some v > 0 leads to
a similar contradiction.

However, f(z+(14x)f(z)) = x+(1+x) f(z) for all z € S. So we have x+(1+x)f(z) =
0 which gives f(z) = —5.

It’s routine to check that f(z) = — 1, satisfies the desired property.

6. Show that there exists a set A of positive integers with the following property: For
any infinite set S of primes there exist two positive integers m € A and n € A each of
which is a product of £ distinct elements of S for some k > 2.

Soln. Let A be the of all positive integers of the form giqs...qq where g1 < g2 < --- <
¢q, are primes. For any infinite set S = {pi1,p2,ps3,...} of primes with p; < ps < ---,
we can satisfy he requirement of the problem by taking k& = p;, m = pips---pr and

N =Dp2p3 - Pk+1-



