36th International Mathematical Olympiad

Canada, July 1995.

1. Let A, B, C, D be distinct points on a line, in that order. The circles with diameters
AC and BD intersect at X and Y. O is an arbitrary point on the line XY but not on
AD. CO intersects the circle with diameter AC' again at M, and BO intersects the other
circle again at N. Prove that AM, DN and XY are concurrent.

Soln. The result is trivial if O coincides with X or Y. Suppose it does not. From
ON -ON =0X -0Y =0C -0OM,
BCMN is cyclic. If O is on the segment XY, then
LMAD + /MNB+ /BND = /MAD + /MCA+ ZAMC = 180° >
If O is not on the segment XY, then
LMAD =180° — LZAMC — ZMAC =180° — ZBND — ZONM = ZMND.

In either case, ADN M is also cyclic. Let AM and DN intersect at Z. Let the line ZX
intersect the first circle at Y7 and the second at Ys. Then

ZX - ZY1h=ZA-ZM =7D-ZN =7X - ZY>.

Hence Y7 = Y5 =Y and indeed Z lies on XY.

2. Let a,b and ¢ be positive real numbers such that abc = 1. Prove that
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Soln. Let S be the right hand side and 7" = a(b+c¢) +b(a+c)+c(a+b) = 2(ab+ac+bc) >
6(abc)?/? = 6. Then by Cauchy’s inequality, we have

1 1 1\* 712
ST>(-+242) =2,
_(a+b+c) 4

Thus S > T/4 > 3/2 as desired.

Second soln. Let x = 1/a. y =1/b, z=1/c. Then zyz = a and

.’L'2 y2 2’2

= + + .
y+z x+z xT+VY

By Cauchy’s inequality,
(@ +y) + (z+2) + (2 +9))S > (z+y +2)°

or S > W > 3(2yz)!/? = 2 as desired.

3. Determine all integers n > 3 such that there are n points A;, Ao, ..., A, in the plane
which satisfy the following two conditions simultaneously.

(a) No three lie on the same line.

(b) There exist real numbers pq,pa,...,p, such that the area of AA;A;A; is equal to
pi+pj+ppforl <i<j<k<n.

Soln. We claim n = 4 is the only answer. For n = 4, let A; A3 A3A,4 be a unit square and
let p1 = pa = p3 = p4 = 1/6. It remains to show no solution exists for n = 5 which implies
that there no solution for any n > 5.

Suppose to the contrary that there is solution with n = 5. Denote the area of
NA;A; A by [ijk] = pi + pj + pr. We cannot have p; = p;. if for example ps = ps,
then [124] = [125] and [234] = [235], which implies that A4A5 is parallel to both A;As
and AsAsz. This is impossible since A1, As, A3 are not collinear. We also observe that if
A;AjARAA, is convex, then p; +pr = p;j +pe. This follows from [ijk| + [kli] = [jk¢] + [¢ij].

Consider the convex hull of Aq,..., A5, we have 3 cases. First, suppose that the
convex hull is a pentagon Ay A3 A3A4As. Since A1 A; A3 Ay and Ay As A3 As are convex, our
observation yields p; + p3 = p2 + p4 and p; + p3 = p2 + ps. Hence py = ps, a contradiction.

Next we suppose that the convex hull is a quadrilateral A; A3 A3A,. We may assume
that As is within A3 A4A;. Then A; A5 A3As is convex and we have the same contradiction
as before.

Finally suppose that the convex hull is a triangle A; A3 As. Since [124]+[234]+[314] =
[125] + [235] 4 [315] we have py = ps, a contradiction.
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4. The positive real numbers xq, x1, ..., T1995 satisfy xg = x1995 and

1
Ti—1 + =2z, + —

Ti—1 Zq
fori=1,2,...,1995. Find the maximum value that o can have.
Soln. The given condition is equivalent to

9 1
(21;1 — xi_l)(xi - ) =0
Ti—1

which yield z; = z;_1/2 and x; = 1/x;_;. We shall prove by induction that x; = 2~ix§
where |k;| < i and ¢; = (—1)%*%. This is true for i = 0, with kg = 0, ¢g = 1. Assume
that it is true for ¢ — 1. Then for z; = %a:i_l, we have k; = k;_1 — 1 and ¢; = ¢;_1. For
x; = 1/x;_1, we have k; = —k;_1 and ¢, = —¢;—1. In each case, it is immediate that
|kiz‘ < 7 and €, — (—1)kl+l Thus o = L1995 — 2k$8 where k = ]{?1995 and € = €1995. Thus
k| < 1995 and € = (—1)199*+%_ If k is odd then ¢ = 1 and this is impossible. Thus k is
even and € = —1 and 23 = 2. Since |k| < 1995, we have k < 1994. Hence zq < 2997,
The value zo = 2°°7 can be attained by choosing z; = %a:i_l for v = 1,2,...,1994 and
T1995 = 1/T1994.

5. Let ABCDFEF be a convex hexagon with AB = BC = CD, DE = EF = FA and
/ZBCD = ZEFA = w/3. Let G and H be two points interior to the hexagon such that
angles AGB and DHFE are both 27 /3. Prove that AG+GB+GH + DH + HE > CF.

Soln. Note that BC'D and FF A are equilateral triangles. Hence BE is an axis of symme-
try of ABDE. Reflect BCD and EF A about BE to BC'A and EF'D respectively. Since
/BGA = 180° — ZAC'B, G lies on the circumcircle of ABC’. By Ptolemy’s Theorem,
AG + GB = C'G. Similarly, DH + HE = HF'. Tt follows that

CF=C'F <C'G+GH+HF =AG+GB+GH + DH + HE,

with equality if and only if G and H both lie on C'F”.

6. Let p be an odd prime. Find the number of p-element subsets A of {1,2,...,2p} such
that the sum if all elements of A is divisible by p.

Soln. For any p-element subset A of {1,2,...,2p}, denote by s(A) the sum of the elements
of A. Of the (25) such subsets, B = {1,2,...,p} and C = {p+ 1,p + 2,...,2p} satisfy
s(B) = s(C) =0 (mod p). For A # B,C, we have AN B # 0 # AN C. Partition
the (2;”) — 2 p-element subsets other than B and C into groups of size p as follows. Two
subsets A and A’ are in the same group if and only if A’NC = ANC and A’N B is a cyclic
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permutation of AN B within B. Suppose A N B has n elements, 0 < n < p. For some m
such that 0 < m < p,

ANB={z+m:xeAnNBx+m<pU{r+m—-p:z€ ANB,z<p<x+m}.

Hence s(A’) — s(A) = mn (mod p), but mn is not divisible by p. It follows that exactly
one subset A in each group satisfies s(4) = 0 (mod p), and the total number of such

subsets is p~! ((21;”) — 2) + 2.

Second soln. Let w be a primitive pth root of unity. Then

a0+a1w+---+ap_1wp_120 it ap=a1=--=ap_1.
Also
2p
H(x—wk):(xp—1)2=x2p—2xp+1.
k=1

If t(w) = Y a;w’, then a; is the number of combinations with i; + -+ +4, =4 (mod p).
Therefore
(a0—2)+a1w+---+agj =0

(5)=2
and a9 —2=a; =+ =ap. So |[S]| = *2— +2.



