39th International Mathematical Olympiad

Taiwan, July 1998.

1. In the convex quadrilateral $A B C D$, the diagonals $A C$ and $B D$ are perpendicular and the opposite sides $A B$ and $D C$ are not parallel. Suppose that the point P, where the perpendicular bisectors of $A B$ and $D C$ meet, is inside $A B C D$. Prove that $A B C D$ is a cyclic quadrilateral if and only if the triangles $A B P$ and $C D P$ have equal areas.

Soln. If $A B C D$ is a cyclic quad, then it is easy to show that $\angle A P B+\angle C P D=180^{\circ}$. From here one easily concludes that the two areas are equal.

For the converse we use coordinate geometry. Let P be the origin. Let the coordinates of A and B be $(-a,-b)$ and $(a,-b)$, respectively where a and b are both positive. Let the midpoint of $C D$ be (c, d). Then, since P is in the interior, C is $(c, d)-t(-d, c)=$ $(c+t d, d-t c)$ and D is $(c, d)+t(-d, c)=(c-t d, d+t c)$, where $t>0$. (The vector $C D$ is in the direction $(-d, c)$.) Without loss of generality, let $c^{2}+d^{2}=1$. Then area of $P C D$ and $A P B$ are t and $a b$, respectively. Thus $t=a b$. The fact that $A C$ is perpendicular to $B D$ implies that

$$
(c-t d-a, d+t c+b) \cdot(c+t d+a, d-t c+b)=0
$$

This simplifies to

$$
\left(1-a^{2}\right)\left(b^{2}+2 b d+1\right)=0
$$

We have

$$
P A=P B=a^{2}+b^{2}, \quad P C=P D=t^{2}+1=a^{2} b^{2}+1 .
$$

Thus $P A=P B=P C=P D=b^{2}+1$ when $a^{2}=1$, i.e., A, B, C, D are on a circle with centre at P.

We now consider the case $b^{2}+2 b d+1=0$. Consider this as a quadratic equation in b, the discriminant $4 d^{2}-4 \geq 0$ if and only if $d^{2} \geq 1$. But we know that $d^{2} \leq 1$. Thus $d^{2}=1$ and consequently $b= \pm 1$ or $b^{2}=1$. Since $b>0$, we actually have $b=1$ and $d=-1$. Thus $c=0$ whence $A=C$ and $B=D$, which is impossible.

Soln. (official): Let $A C$ and $B D$ meet at E. Assume by symmetry that P lies in $\triangle B E C$ and denote $\angle A B E=\phi$ and $\angle A C D=\psi$. The triangles $A B P$ and $C D P$ are isosceles. If M and N are the respective midpoints of their bases $A B$ and $C D$, then $P M \perp A B$ and $P N \perp C D$. Note that M, N and P are not collinear due to the uniqueness of P.

Consider the median $E M$ to the hypotenuse of the right triangle $A B E$. We have $\angle B E M=\phi, \angle A M E=2 \phi$ and $\angle E M P=90^{\circ}-2 \phi$. Likewise, $\angle C E N=\psi, \angle D N E=\psi$ and $\angle E N P=90^{\circ}-2 \psi$. Hence $\angle M E N=90^{\circ}+\phi+\psi$ and a direct computation yields

$$
\angle N P M=360^{\circ}-(\angle E M P+\angle M E N+\angle E N P)=90^{\circ}+\phi+\psi=\angle M E N
$$

It turns out that, whenever $A C \perp B D$, the quadrilateral $E M P N$ has a pair of equal opposite angles, the ones at E and P.

We now prove our claim. Since $A B=2 E M$ and $C D=2 E N$, we have $[A B P]=$ $[C D P]$ if and only if $E M \cdot P M=E N \cdot P N$, or $E M / E N=P N / P M$. On account of $\angle M E N=\angle N P M$, the latter is equivalent to $\triangle E M N \sim \triangle P N M$. This holds if and only if $\angle E M N=\angle P N M$ and $\angle E N M=\angle P M N$, and these in turn mean that $E M P N$ is a parallelogram. But the opposite angles of $E M P N$ at E and P are always equal, as noted above. So it is a parallelogram if and only if $\angle E M P=\angle E N P$; that is, if $90^{\circ}-2 \phi=90^{\circ}-2 \psi$. We thus obtain a condition equivalent to $\phi=\psi$, or to $A B C D$ being cyclic.
2. In a competition, there are a contestants and b judges, where $b \geq 3$ is an odd integer. Each judge rates each contestant as either "pass" or "fail". Suppose k is a number such that, for any two judges, their ratings coincide for at most k contestants. Prove that

$$
\frac{k}{a} \geq \frac{b-1}{2 b} .
$$

Soln. Form a matrix where columns represent the contestants and the rows represents the judges. And we have a 1 when the judge "passes" the corresponding contestant and a 0 otherwise. A pair of entries in the same column are "good" if they are equal. Thus the number of good pairs in any two rows is at most k whence the total number of good pairs in the matrix is at most $\binom{b}{2} k=k b(b-1) / 2$. In any column, if there are i zeroes, then the total number of good pairs is $\binom{i}{2}+\binom{j}{2}$, where $j=b-i$. Write $b=2 m+1$ (since b is odd), we have

$$
\binom{i}{2}+\binom{j}{2}-m^{2}=(m-i)^{2}+(m-i)=(m-j)^{2}+(m-j) \geq 0
$$

since either $m-i \geq 0$ or $m-j \geq 0$. Thus the total number of good pairs is at least $a m^{2}=a(b-1)^{2} / 4$. Therefore

$$
a(b-1)^{2} / 4 \leq k b(b-1) / 2
$$

from which the result follows.
3. For any positive integer n, let $d(n)$ denote the number of positive divisors of n (including 1 and n itself). Determine all positive integers k such that

$$
\frac{d\left(n^{2}\right)}{d(n)}=k
$$

for some n.

Soln. Note that an integer q satisfies $d\left(n^{2}\right) / d(n)=q$ for some q if and only if q is of the form

$$
\begin{equation*}
\frac{\left(4 k_{1}+1\right)\left(4 k_{2}+1\right) \ldots\left(4 k_{i}+1\right)}{\left(2 k_{1}+1\right)\left(2 k_{2}+1\right) \ldots\left(2 k_{i}+1\right)} \tag{*}
\end{equation*}
$$

(This follows from the fact that if $q=p_{1}^{k_{1}} \cdots p_{i}^{k_{i}}$ is the prime decomposition of q, then $d(q)=\left(k_{1}+1\right) \cdots\left(k_{i}+1\right)$.) Thus m is necessarily odd. Thus we need to show that every odd number can be expressed in the same way. Certainly 1 and 3 can be so expressed as $1=1 / 1$ and $3=\frac{5}{3} \frac{9}{5}$. Let p be an odd integer. We assume that every odd integer less than p can be written in the form $(*)$. We have

$$
p+1=2^{m}(2 k+1)
$$

for some positive integer m and nonnegative integer k. If $m=1$, then $p=4 k+1=$ $\frac{4 k+1}{2 k+1}(2 k+1)$. Since $2 k+1<p$, by the induction hypothesis, it can be expresses in the form ($*$) and hence so can p.

Now suppose that $m>1$. We have

$$
p\left(2^{m}-1\right)=2^{2 m-1} k-2^{m} k+2^{2 m-2}-2^{m}+1=2^{m} x+1
$$

and

$$
\frac{2^{m} x+1}{2^{m-1} x+1} \frac{2^{m-1} x+1}{2^{m-2} x+1} \cdots \frac{4 x+1}{2 x+1}=\frac{p\left(2^{m}-1\right)}{2 x+1}=\frac{p}{2 k+1}
$$

since $2 x+1=\left(2^{m-1}-1\right)(2 k+1)$. Since the left hand side is of the form $(*)$ and $2 k+1$ can be written in that form by the induction hypothesis, we conclude that p can also be written in the same form.
(Note: The main idea is that it is easy to solve the case where $p \equiv 1(\bmod 4)$. For $p \equiv 3(\bmod 4)$, we try to multiply p with an odd integer so that $p(4 k+3)=4 \ell+1$. By considering small values of p it was found that $2^{m}-1$ as defined above works.)
4. Determine all pairs (a, b) of positive integers such that $a b^{2}+b+7$ divides $a^{2} b+a+b$.

Soln. Since $a b^{2}+b+7 \mid b\left(a^{2} b+a+b\right)$ and $a^{2} b^{2}+a b+b^{2}=a\left(a b^{2}+b+7\right)+\left(b^{2}-7 a\right)$, we have either $b^{2}-7 a=0$ or $b^{2}-7 a$ is a multiple of $a b^{2}+b+7$. The former implies that $b=7 t$ and $a=7 t^{2}$. Indeed these are solutions for all positive t.

For the second case, we note that $b^{2}-7 a<a b^{2}+b+7$. Thus $b^{2}-7 a<0$. For $a b^{2}+b+7$ to divide $7 a-b^{2}, b=1,2$. The case $b=1$ requires that $7 a-1$ be divisible by $a+8$. The quotients are less than 7 . Testing each of the possibilities yields $a=49,11$. These are indeed solutions.

The case $b=2$ requires that $7 a-4$ be divisible by $4 a+11$. The quotient has to be 1 and this is clearly impossible.
5. Let I be the incentre of triangle $A B C$. Let the incircle of $A B C$ touch the sides $B C$, $C A$ and $A B$ at K, L and M, respectively. The line through B parallel to $M K$ meets the lines $L M$ and $L K$ at R and S, respectively. Prove that $\angle R I S$ is acute.

Soln. (Use coordinate geometry) Let I be the origin and the coordinates of B be ($0, a$). Let the inradius be 1 . Then the coordinates of M and K are $(r, s$ and $(-r, s)$ where $r=\sqrt{a^{2}-1} / a$ and $s=1 / a$. Let the coordinate of L be (p, q). Then we have $p^{2}+q^{2}=1$. Let the coordinates of R and S be $\left(x^{\prime}, a\right)$ and $\left(x^{\prime \prime}, a\right)$. Then $x^{\prime}=[r(a-q)+p(s-a)] /(s-q)=$
$m+n$ where $m=\sqrt{a^{2}-1}(a-q) /(1-a q)$ and $n=p\left(1-a^{2}\right) /(1-a q)$ and $x "=-m+n$. Let P be the mid point of $S R$. Then $\angle R I S$ is acute if and only if $O P>m$. Now $O P^{2}=a^{2}+n^{2}>m^{2}$ if and only if $(a q-1)^{2}>0$. Thus we are done. (Note: From the proof one can conclude that result still holds if one replaces the incircle by the excircle and the incentre by the corresponding excentre.

Second soln. (official): Let $\angle A=2 a, \angle B=2 b$ and $\angle C=2 c$. Then we have

$$
\angle B M R=90^{\circ}-a, \quad \angle M B R=90^{\circ}-b, \quad \angle B R M=90^{\circ}-c .
$$

Hence $B R=B M \cos a / \cos c$. Similarly $B S=B K \cos c / \cos a=B L \cos a / \cos a$. Thus

$$
\begin{aligned}
I R^{2}+I S^{2}-R S^{2} & =\left(B I^{2}+B R^{2}\right)+\left(B I^{2}+B S^{2}\right)-(B R+B S)^{2} \\
& =2\left(B I^{2}-B R \cdot B S\right)=2\left(B I^{2}-B K^{2}\right)=2 I K^{2}>0
\end{aligned}
$$

So by the cosine law, $\angle R I S$ is acute.
6. Consider all functions f from the set \mathbb{N} of all positive integers into itself satisfying

$$
f\left(t^{2} f(s)\right)=s(f(t))^{2}
$$

for all s and t in \mathbb{N}. Determine the least possible value of $f(1998)$.

Soln. (Official solution): Let f be a function that satisfies the given conditions and let $f(1)=a$. By putting $s=1$ and then $t=1$, we have

$$
f\left(a t^{2}\right)=f(t)^{2}, \quad f(f(s))=a^{2} s . \quad \text { for all } s, t
$$

Thus

$$
\begin{aligned}
(f(s) f(t))^{2} & =f(s)^{2} f\left(a t^{2}\right)=f\left(s^{2} f\left(f\left(a t^{2}\right)\right)\right) \\
& =f\left(s^{2} a^{2} a t^{2}\right)=f\left(a(a s t)^{2}\right) \\
& =f(a s t)^{2}
\end{aligned}
$$

It follows that $f(a s t)=f(s) f(t)$ for all s, t; in particular $f(a s)=a f(s)$ and so

$$
a f(s t)=f(s) f(t) \quad \text { for all } s, t
$$

From this it follows by induction that

$$
f(t)^{k}=a^{k-1} f\left(t^{k}\right), \quad \text { for all } t, k
$$

We next prove that $f(n)$ is divisible by a for each n. For each prime p, let p^{α} and p^{β} be highest power of p that divides a and $f(n)$, respectively. The highest power of p that divides $f(n)^{k}$ is $p^{k \beta}$ while that for a^{k-1} is $p^{(k-1) \alpha}$. Hence $k \beta \geq(k-1) \alpha$ for all k which is possible only if $\beta \geq \alpha$. Thus a divides $f(n)$.

Thus the new function $g(n)=f(n) / a$ satisfies

$$
g(a)=a, \quad g(m n)=g(m) g(n), \quad g(g(m))=m, \quad \text { for all } m, n .
$$

The last follows from

$$
\begin{aligned}
a g(g(m)) & =g(a) g(g(m))=g(a g(m))=g(f(m)) \\
& =f(f(m)) / a=a^{2} m / m=a m
\end{aligned}
$$

It is easy to show that g also satisfies all the conditions and $g(n) \leq f(n)$. Thus we can restrict our consideration to g.

Now g is an injection and takes a prime to a prime. Indeed, let p be a prime and let $g(p)=u v$. Then $p=g(g(p))=g(u v)=g(u) g(v)$. Thus one of the factors, say $g(u)=1$. Then $u=g(g(u))=g(1)=1$. Thus $g(p)$ is a prime. Moreover, $g(m)=g(n)$ implies that $m=g(g(m))=g(g(n))=n$.

To determine the minimum value, we have $g(1998)=g\left(2 \cdot 3^{3} \cdot 37\right)=g(2) g(3)^{3} g(37)$. Thus a lower bound for $g(1998)$ is $2^{3} \cdot 3 \cdot 5=120$. There is also a g with $g(1998)=120$. This is obtained by defining $g(3)=2, g(2)=3, g(5)=37, g(37)=5$, and $g(p)=p$ for all other primes.

