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1. In the convex quadrilateral ABCD, the diagonals AC and BD are perpendicular and
the opposite sides AB and DC are not parallel. Suppose that the point P , where the
perpendicular bisectors of AB and DC meet, is inside ABCD. Prove that ABCD is a
cyclic quadrilateral if and only if the triangles ABP and CDP have equal areas.

Soln. If ABCD is a cyclic quad, then it is easy to show that ∠APB + ∠CPD = 180◦.
From here one easily concludes that the two areas are equal.

For the converse we use coordinate geometry. Let P be the origin. Let the coordinates
of A and B be (−a,−b) and (a,−b), respectively where a and b are both positive. Let
the midpoint of CD be (c, d). Then, since P is in the interior, C is (c, d) − t(−d, c) =
(c + td, d − tc) and D is (c, d) + t(−d, c) = (c − td, d + tc), where t > 0. (The vector CD
is in the direction (−d, c).) Without loss of generality, let c2 + d2 = 1. Then area of PCD
and APB are t and ab, respectively. Thus t = ab. The fact that AC is perpendicular to
BD implies that

(c− td− a, d+ tc+ b) · (c+ td+ a, d− tc+ b) = 0.

This simplifies to
(1− a2)(b2 + 2bd+ 1) = 0.

We have
PA = PB = a2 + b2, PC = PD = t2 + 1 = a2b2 + 1.

Thus PA = PB = PC = PD = b2 + 1 when a2 = 1, i.e., A, B, C, D are on a circle with
centre at P .

We now consider the case b2 +2bd+1 = 0. Consider this as a quadratic equation in b,
the discriminant 4d2 − 4 ≥ 0 if and only if d2 ≥ 1. But we know that d2 ≤ 1. Thus d2 = 1
and consequently b = ±1 or b2 = 1. Since b > 0, we actually have b = 1 and d = −1. Thus
c = 0 whence A = C and B = D, which is impossible.

Soln. (official): Let AC and BD meet at E. Assume by symmetry that P lies in ∆BEC
and denote ∠ABE = φ and ∠ACD = ψ. The triangles ABP and CDP are isosceles. If
M and N are the respective midpoints of their bases AB and CD, then PM ⊥ AB and
PN ⊥ CD. Note that M , N and P are not collinear due to the uniqueness of P .

Consider the median EM to the hypotenuse of the right triangle ABE. We have
∠BEM = φ, ∠AME = 2φ and ∠EMP = 90◦ − 2φ. Likewise, ∠CEN = ψ, ∠DNE = ψ
and ∠ENP = 90◦ − 2ψ. Hence ∠MEN = 90◦ + φ+ ψ and a direct computation yields

∠NPM = 360◦ − (∠EMP + ∠MEN + ∠ENP ) = 90◦ + φ+ ψ = ∠MEN.

It turns out that, whenever AC ⊥ BD, the quadrilateral EMPN has a pair of equal
opposite angles, the ones at E and P .
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We now prove our claim. Since AB = 2EM and CD = 2EN , we have [ABP ] =
[CDP ] if and only if EM · PM = EN · PN , or EM/EN = PN/PM . On account of
∠MEN = ∠NPM , the latter is equivalent to ∆EMN ∼ ∆PNM . This holds if and
only if ∠EMN = ∠PNM and ∠ENM = ∠PMN , and these in turn mean that EMPN
is a parallelogram. But the opposite angles of EMPN at E and P are always equal,
as noted above. So it is a parallelogram if and only if ∠EMP = ∠ENP ; that is, if
90◦ − 2φ = 90◦ − 2ψ. We thus obtain a condition equivalent to φ = ψ, or to ABCD being
cyclic.

2. In a competition, there are a contestants and b judges, where b ≥ 3 is an odd integer.
Each judge rates each contestant as either “pass” or “fail”. Suppose k is a number such
that, for any two judges, their ratings coincide for at most k contestants. Prove that

k

a
≥ b− 1

2b
.

Soln. Form a matrix where columns represent the contestants and the rows represents the
judges. And we have a 1 when the judge “passes” the corresponding contestant and a 0
otherwise. A pair of entries in the same column are “good” if they are equal. Thus the
number of good pairs in any two rows is at most k whence the total number of good pairs
in the matrix is at most

(
b
2

)
k = kb(b− 1)/2. In any column, if there are i zeroes, then the

total number of good pairs is
(

i
2

)
+

(
j
2

)
, where j = b− i. Write b = 2m+ 1 (since b is odd),

we have (
i

2

)
+

(
j

2

)
−m2 = (m− i)2 + (m− i) = (m− j)2 + (m− j) ≥ 0

since either m − i ≥ 0 or m − j ≥ 0. Thus the total number of good pairs is at least
am2 = a(b− 1)2/4. Therefore

a(b− 1)2/4 ≤ kb(b− 1)/2

from which the result follows.

3. For any positive integer n, let d(n) denote the number of positive divisors of n (in-
cluding 1 and n itself). Determine all positive integers k such that

d(n2)
d(n)

= k

for some n.

Soln. Note that an integer q satisfies d(n2)/d(n) = q for some q if and only if q is of the
form

(4k1 + 1)(4k2 + 1) . . . (4ki + 1)
(2k1 + 1)(2k2 + 1) . . . (2ki + 1)

(∗)
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(This follows from the fact that if q = pk1
1 · · · pki

i is the prime decomposition of q, then
d(q) = (k1 + 1) · · · (ki + 1).) Thus m is necessarily odd. Thus we need to show that every
odd number can be expressed in the same way. Certainly 1 and 3 can be so expressed as
1 = 1/1 and 3 = 5

3
9
5 . Let p be an odd integer. We assume that every odd integer less than

p can be written in the form (∗). We have

p+ 1 = 2m(2k + 1)

for some positive integer m and nonnegative integer k. If m = 1, then p = 4k + 1 =
4k+1
2k+1 (2k + 1). Since 2k + 1 < p, by the induction hypothesis, it can be expresses in the
form (∗) and hence so can p.

Now suppose that m > 1. We have

p(2m − 1) = 22m−1k − 2mk + 22m−2 − 2m + 1 = 2mx+ 1

and
2mx+ 1

2m−1x+ 1
2m−1x+ 1
2m−2x+ 1

· · · 4x+ 1
2x+ 1

=
p(2m − 1)

2x+ 1
=

p

2k + 1

since 2x+ 1 = (2m−1 − 1)(2k + 1). Since the left hand side is of the form (∗) and 2k + 1
can be written in that form by the induction hypothesis, we conclude that p can also be
written in the same form.

(Note: The main idea is that it is easy to solve the case where p ≡ 1 (mod 4). For
p ≡ 3 (mod 4), we try to multiply p with an odd integer so that p(4k + 3) = 4`+ 1. By
considering small values of p it was found that 2m − 1 as defined above works.)

4. Determine all pairs (a, b) of positive integers such that ab2 + b+ 7 divides a2b+ a+ b.

Soln. Since ab2 + b+ 7|b(a2b+ a+ b) and a2b2 + ab+ b2 = a(ab2 + b+ 7) + (b2 − 7a), we
have either b2 − 7a = 0 or b2 − 7a is a multiple of ab2 + b + 7. The former implies that
b = 7t and a = 7t2. Indeed these are solutions for all positive t.

For the second case, we note that b2 − 7a < ab2 + b + 7. Thus b2 − 7a < 0. For
ab2 + b + 7 to divide 7a − b2, b = 1, 2. The case b = 1 requires that 7a − 1 be divisible
by a+ 8. The quotients are less than 7. Testing each of the possibilities yields a = 49, 11.
These are indeed solutions.

The case b = 2 requires that 7a− 4 be divisible by 4a+ 11. The quotient has to be 1
and this is clearly impossible.

5. Let I be the incentre of triangle ABC. Let the incircle of ABC touch the sides BC,
CA and AB at K, L and M , respectively. The line through B parallel to MK meets the
lines LM and LK at R and S, respectively. Prove that ∠RIS is acute.

Soln. (Use coordinate geometry) Let I be the origin and the coordinates of B be (0, a).
Let the inradius be 1. Then the coordinates of M and K are (r, s and (−r, s) where
r =

√
a2 − 1/a and s = 1/a. Let the coordinate of L be (p, q). Then we have p2 + q2 = 1.

Let the coordinates of R and S be (x′, a) and (x”, a). Then x′ = [r(a−q)+p(s−a)]/(s−q) =
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m+ n where m =
√
a2 − 1(a− q)/(1− aq) and n = p(1− a2)/(1− aq) and x” = −m+ n.

Let P be the mid point of SR. Then ∠RIS is acute if and only if OP > m. Now
OP 2 = a2 + n2 > m2 if and only if (aq − 1)2 > 0. Thus we are done. (Note: From the
proof one can conclude that result still holds if one replaces the incircle by the excircle and
the incentre by the corresponding excentre.

Second soln. (official): Let ∠A = 2a, ∠B = 2b and ∠C = 2c. Then we have

∠BMR = 90◦ − a, ∠MBR = 90◦ − b, ∠BRM = 90◦ − c.

Hence BR = BM cos a/ cos c. Similarly BS = BK cos c/ cos a = BL cos a/ cos a. Thus

IR2 + IS2 −RS2 = (BI2 +BR2) + (BI2 +BS2)− (BR+BS)2

= 2(BI2 −BR ·BS) = 2(BI2 −BK2) = 2IK2 > 0

So by the cosine law, ∠RIS is acute.

6. Consider all functions f from the set N of all positive integers into itself satisfying

f
(
t2f (s)

)
= s (f (t))2 ,

for all s and t in N. Determine the least possible value of f(1998).

Soln. (Official solution): Let f be a function that satisfies the given conditions and let
f(1) = a. By putting s = 1 and then t = 1, we have

f(at2) = f(t)2, f(f(s)) = a2s. for all s, t.

Thus
(f(s)f(t))2 = f(s)2f(at2) = f(s2f(f(at2)))

= f(s2a2at2) = f(a(ast)2)

= f(ast)2

It follows that f(ast) = f(s)f(t) for all s, t; in particular f(as) = af(s) and so

af(st) = f(s)f(t) for all s, t.

From this it follows by induction that

f(t)k = ak−1f(tk), for all t, k.

We next prove that f(n) is divisible by a for each n. For each prime p, let pα and pβ

be highest power of p that divides a and f(n), respectively. The highest power of p that
divides f(n)k is pkβ while that for ak−1 is p(k−1)α. Hence kβ ≥ (k− 1)α for all k which is
possible only if β ≥ α. Thus a divides f(n).
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Thus the new function g(n) = f(n)/a satisfies

g(a) = a, g(mn) = g(m)g(n), g(g(m)) = m, for all m,n.

The last follows from

ag(g(m)) = g(a)g(g(m)) = g(ag(m)) = g(f(m))

= f(f(m))/a = a2m/m = am

It is easy to show that g also satisfies all the conditions and g(n) ≤ f(n). Thus we can
restrict our consideration to g.

Now g is an injection and takes a prime to a prime. Indeed, let p be a prime and let
g(p) = uv. Then p = g(g(p)) = g(uv) = g(u)g(v). Thus one of the factors, say g(u) = 1.
Then u = g(g(u)) = g(1) = 1. Thus g(p) is a prime. Moreover, g(m) = g(n) implies that
m = g(g(m)) = g(g(n)) = n.

To determine the minimum value, we have g(1998) = g(2 · 33 · 37) = g(2)g(3)3g(37).
Thus a lower bound for g(1998) is 23 · 3 · 5 = 120. There is also a g with g(1998) = 120.
This is obtained by defining g(3) = 2, g(2) = 3, g(5) = 37, g(37) = 5, and g(p) = p for all
other primes.
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