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1. Consider the set of integers A = {2a3b5c : 0 ≤ a, b, c ≤ 5}. Find the smallest number n
such that whenever S is a subset of A with n elements, you can find two numbers p, q in
A with p | q.

2. “Words” are formed with the letters A and B. Using the words x1, x2, . . ., xn we can
form a new word if we write these words consecutively one next to another: x1x2 . . . xn.
A word is called a palindrome, if it is not changed after rewriting its letters in the reverse
order. Prove that any word with 1995 letters A and B can be formed with less than 800
palindromes.

3. Let n ≥ 2 be an integer and M = {1, 2, . . . , n}. For every k ∈ {1, 2, . . . , n− 1}, let

xk =
1

n + 1

∑
A⊂M
|A|=k

(minA + max A).

Prove that x1, x2, . . . , xn−1 are integers, not all divisible by 4.

4. The lattice frame construction of 2×2×2 cube is formed with 54 metal shafts of length
1 (points of shafts’ connection are called junctions). An ant starts from some junction A
and creeps along the shafts in accordance with the following rule: when the ant reaches
the next junction it turns to a perpendicular shaft. t some moment the ant reaches the
initial junction A; there is no junction (except for A) where the ant has been twice. What
is the maximum length of the ant’s path?

5. Let n black and n white objects be placed on the circumference of a circle, and define
any set of m consecutive objects from this cyclic sequence to be an m-chain.

(a) Prove that for each natural number k ≤ n, there exists a chain of 2k consecutive
pieces on the circle of which exactly k are black.

(b) Prove that there are at least two such chains that are disjoint if

k ≤ √
2n + 2− 2

.

1



Singapore International Mathematical Olympiad Committee

29-9-2001

6. We are given 1999 rectangles with sides of integer not exceeding 1998. Prove that
among these 1999 rectangles there are rectangles, say A, B and C such that A will fit
inside B and B will fit inside C.

7. We are given N lines (N > 1) in a plane, no two of which are parallel and no three
of which have a point in common. Prove that it is possible to assign, to each region of
the plane determined by these lines, a non-zero integer of absolute value not exceeding N ,
such that the sum of the integers on either side of any of the given lines is equal to 0.

8. Let S be a set of 2n+1 points in the plane such that no three are collinear and no four
concyclic. A circle will be called good if it has 3 points of S on its circumference, n − 1
points in its interior and n − 1 in its exterior. Prove that the number of good circles has
the same parity as n.
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9. Let ARBPCQ be a hexagon. Suppose that ∠AQR = ∠ARQ = 15o, ∠BPR =
∠CPQ = 30o and ∠BRP = ∠CQP = 45o. Prove that AB is perpendicular to AC.

10. Γ1 and Γ2 are two circles on the plane such that Γ1 and Γ2 lie outside each other.
An external common tangent to the two circles touches Γ1 at A and Γ2 at C and an
internal common tangent to the two circles touches Γ1 at B and Γ2 at D. Prove that the
intersection of AB and CD lie on the line joining the centres of Γ1 and Γ2

11. Let E and F be the midpoints of AC and AB of 4ABC respectively. Let D be a
point on BC. Suppose that

(i) P is a point on BF and DP is parallel to CF ,

(ii) Q is a point on CE and DQ is parallel to BE,

(iii) PQ intersects BE and CF at R and S respectively.

Prove that PQ = 3RS.

12. Let AD, BE and CF be the altitudes of an acute-angled triangle ABC. Let P be a
point on DF and K the point of intersection between AP and EF . Suppose Q is a point
on EK such that ∠KAQ = ∠DAC. Prove that AP bisects ∠FPQ.

13. In a square ABCD, C is a circular arc centred at A with radius AB, P and M are
points on CD and BC respectively such that PM is tangent to C. Let AP and AM
intersect BD at Q and N respectively. Prove that the vertices of the pentagon PQNMC
lie on a circle.
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14. In triangle ABC, the angle bisectors of angle B and C meet the median AD at points
E and F respectively. If BE = CF , prove that 4ABC is isosceles.

15. Let ABCD be a convex quadrilateral. Prove that there exists a point E in the plane
of ABCD such that 4ABE is similar to 4CDE.

16. Let P, Q be points taken on the side BC of a triangle ABC, in the order B, P,Q, C.
Let the circumcircles of PAB, QAC intersect at M (6= A) and those of PAC, QAB at N
(6= A). Prove that A,M, N are collinear if and only if P, Q are symmetric in the midpoint
A′ of BC.

17. About a set of four concurrent circles of the same radius r, four of the common tangents
are drawn to determine the circumscribing quadrilateral ABCD. Prove that ABCD is a
cyclic quadrilateral.

18. Three circles of the same radius r meet at common point. Prove that the triangle
having the other three points of intersections as vertices has circumradius equal to r

4



Singapore International Mathematical Olympiad Committee

27-10-2001

19. For any positive real numbers a, b, c,

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

20. Let a, b, c be positive numbers such that a + b + c ≤ 3. Prove that

1
1 + a

+
1

1 + b
+

1
1 + c

≥ 3
2
.

21. Prove that for any positive real numbers a, b, c,

a

10b + 11c
+

b

10c + 11a
+

c

10a + 11b
≥ 1

7
.

22. Prove that for any positive real numbers a, b, c, d, e,

a

b + 2c + 3d + 4e
+

b

c + 2d + 3e + 4a
+

c

d + 2e + 3a + 4b
+

d

e + 2a + 3b + 4c

+
e

a + 2b + 3c + 4d
≥ 1

2
.

23. Let n be a positive integer and let a1, a2, . . ., an be n positive real numbers such that
a1 + a2 + · · ·+ an = 1. Is it true that

a4
1

a2
1 + a2

2

+
a4
2

a2
2 + a2

3

+ · · ·+ a4
n

a2
n + a2

1

≥ 1
2n

?

24. Let a, b, c, d be nonnegative real numbers such that ab + bc + cd + da = 1. Prove that

a3

b + c + d
+

b3

a + c + d
+

c3

a + b + d
+

d3

a + b + c
≥ 1

3
.

25. (IMO 95) Let a, b and c be positive real numbers such that abc = 1. Prove that

1
a3(b + c)

+
1

b3(a + b)
+

1
c3(a + b)

≥ 3
2
.

Cauchy’s inequality is useful for these questions.

(x2
1 + x2

2 + · · ·+ x2
i )(y

2
1 + y2

2 + · · ·+ y2
i ) ≥ (x1y1 + x2y2 + · · ·+ xiyi)2.

Equality holds iff xj = tyj for all j, where t is some constant.
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26. A sequence of natural numbers {an} is defined by a1 = 1, a2 = 3 and

an = (n + 1)an−1 − nan−2 (n ≥ 2).

Find all values of n such that 11|an.

27. Let{xn}, n ∈ N be a sequence of numbers satisfying the condition

|x1| < 1, xn+1 =
−xn +

√
3− 3x2

n

2
, (n ≥ 1).

(a) What other condition does x1 need to satisfy so that all the numbers of the
sequence are positive?

(b) Is the given sequence periodic?

28. Suppose that a function f defined on the positive integers satisfies f(1) = 1, f(2) = 2,
and

f(n + 2) = f(n + 2− f(n + 1)) + f(n + 1− f(n)), (n ≥ 1).

(a) Show that 0 ≤ f(n + 1)− f(n) ≤ 1.

(b) Show that if f(n) is odd, then f(n + 1) = f(n) + 1.

(c) Determine, with justification, all values of n for which f(n) = 210 + 1.

29. Determine the number of all sequences {x1, x2, . . . , xn}, with xi ∈ {a, b, c} for i =
1, 2, . . . , n that satisfy x1 = xn = a and xi 6= xi+1 for i = 1, 2, . . . , n− 1.

30. Given is a prime p > 3. Set q = p3. Define the sequence {an} by:

an =
{

n for n = 0, 1, 2, . . . , p− 1,
an−1 + an−p for n > p− 1.

Determine the remainder when aq is divided by p.

31. A and B are two candidates taking part in an election. Assume that A receives m
votes and B receives n votes, where m,n ∈ N and m > n. Find the number of ways in
which the ballots can be arranged in order that when they are counted, one at a time, the
number of votes for A will always be more than that for B at any time during the counting
process.
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32. Find all prime numbers p for which the number p2 +11 has exactly 6 different divisors
(including 1 and the number itself.)

33. Determine all pairs (a, b) of positive integers such that ab2 + b + 7 divides a2b + a + b.

34. Let p be an odd prime. Prove that

1p−2 + 2p−2 + 3p−2 + · · ·+
(

p− 1
2

)p−2

≡ 2− 2p

p
(mod p).

35. (10th grade) Let d(n) denote the greatest odd divisor of the natural number n. Define
the function f : N→ N by f(2n− 1) = 2n, f(2n) = n + 2n/d(n) for all n ∈ N. Find all k
such that f(f(. . . (1) . . .)) = 1997 where f is iterated k times.

36. Given three real numbers such that the sum of any two of them is not equal to 1,
prove that there are two numbers x and y such that xy/(x + y− 1) does not belong to the
interval (0, 1).
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37. In the parliament of country A, each MP has at most 3 enemies. Prove that it is
always possible to separate the parliament into two houses so that every MP in each house
has at most one enemy in his own house.

38. Let T (x1, x2, x3, x4) = (x1−x2, x2−x3, x3−x4, x4−x1). If x1, x2, x3, x4 are not equal
integers, show that there is no n such that Tn(x1, x2, x3, x4) = (x1, x2, x3, x4).

39. Start with n pairwise different integers x1, x2, x3, xn, n > 2 and repeat the following
step:

T : (x1, x2, · · · , xn) → (
x1 + x2

2
,
x2 + x3

2
, · · · , xn + x1

2
).

Show that T, T 2, · · ·, finally leads to nonintegral component.

40. Is it possible to transform f(x) = x2 + 4x + 3 into g(x) = x2 + 10x + 9 by a sequence
of transformations of the form

f(x) → x2f(1/x + 1) or f(x) → (x− 1)2f(1/(x− 1))?

41. Is it possible to arrange the integers 1, 1, 2, 2, · · ·, 1998, 1998, such that there are
exactly i− 1 other numbers between any two i’s?

42. A rectangular floor can be covered by n 2× 2 and m 1× 4 tiles, one tile got smashed.
Show that one can not substitute that tile by the other type (2× 2 or 1× 4).

43. In how many ways can you tile a 2× n rectangle by 2× 1 dominoes?

44. In how many ways can you tile a 2× n rectangle by 1× 1 squares and L trominoes?

45. In how many ways can you tile a 2× n rectangle by 2× 2 squares and L trominoes?

46. Let a1 = 0, |a2| = |a1 + 1|, · · · , |an| = |an−1 + 1|. Prove that

a1 + a2 + · · ·+ an

n
≥ −1

2
.

47. Find the number an of all permutations σ of {1, 2, . . . , , n} with |σ(i)− i| ≤ 1 for all i.

48. Can you select from 1, 1
2 , 1

4 , 1
8 , . . . an infinite geometric sequence with sum (a) 1

5? (b) 1
7?

49. Let x0, a > 0, xn+1 = 1
2 (xn + a

xn
). Find lim

n→∞
an.

8



50. Let 0 < a < b, a0 = a and b0 = b. For n ≥ 0, define

an+1 =
√

anbn, bn+1 =
an + bn

2
.

Show that lim
n→∞

an = lim
n→∞

bn.

51. Let a0, a1 = 1, an = 2an−1 + an−2, n > 1. Show that 2k|an if and only if 2k|n.
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52. Determine all α ∈ R such that there exists a nonconstant function f : R → R such
that

f(α(x + y)) = f(x) + f(y).

53. Let f : N→ N be a function satisfying

(a) For every n ∈ N, f(n + f(n)) = f(n).

(b) For some n0 ∈ N, f(n0) = 1.

Show that f(n) = 1 for all n ∈ N.

54. Suppose that f : N→ N satisfies f(1) = 1 and for all n,

(a) 3f(n)f(2n + 1) = f(2n)(1 + 3f(n)),

(b) f(2n) < 6f(n).

Find all (k, m) such that f(k) + f(m) = 2001.

55. Let f : R→ R be a function such that for all x, y ∈ R,

f(x3 + y3) = (x + y)((f(x))2 − f(x)f(y) + (f(y))2).

Prove that for all x ∈ R, f(2001x) = 2001f(x).

56. Find all functions f : N→ N with the property that for all n ∈ N,

1
f(1)f(2)

+
1

f(2)f(3)
+ · · ·+ 1

f(n)f(n + 1)
=

f(f(n))
f(n + 1)

.

57. Define f : N→ N and g : N→ Z such that

(a) f(x, x) = x,

(b) f(x, y) = f(y, x),

(c) f(x, y) = f(x, x + y),

(d) g(2001) = 2002,

(e) g(xy) = g(x) + g(y) + mg(f(x, y)).

Determine all integers m for which g exists.
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58. Let a0 = 2001 and an+1 = a2
n

an+1 . Find the largest integer smaller than or equal to
a1001.

59. Given a polynomial f(x) = x100− 600x99 + · · · with 100 real roots and that f(7) > 1,
show that at least one of the roots is greater than 7.

60. We define S(n) as the number of ones in the binary representation of n. Does there
exist a positive integer n such that S(n2)

S(n) < 501
2001?

61. A semicircle S is drawn on one side of a straight line l. C and D are points on S. The
tangents to S at C and D meet l at B and A respectively, with the center of the semicircle
between them. Let E be the point of intersection of AC and BD, and F be the point on
l such that EF is perpendicular to l. Prove that EF bisects ∠CFD.

62. At a round table are 2002 girls, playing a game with n cards. Initially, one girl holds
all the cards. In each turn, if at least one girl holds at least two cards, one of these girls
must pass a card to each of her two neighbours. The game ends when each girl is holding
at most one card.

(a) Prove that if n ≥ 2002, then the game cannot end.

(b) Prove that if n < 2002, then the game must end.
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63. Suppose {ai}m
i=n is a finite sequence of integers, and there is a prime p and some

k, n ≤ k ≤ m such that p|ak but p 6 |aj , n ≤ j ≤ m, j 6= k. Prove that
∑m

i=n
1
ai

cannot be
an integer.

64. Prove that for any choice of m and n, m,n > 1,
∑m

i=n
1
i cannot be a positive integer.

65. There is a tournament where 10 teams take part, and each pair of teams plays against
each other once and only once. Define a cycle {A,B,C} to be such that team A beats
team B, B beats C and C beats A. Two cycles {A,B, C} and {C, A,B} are considered the
same. Find the largest possible number of cycles after all the teams have played against
each other.

66. Consider the recursions xn+1 = 2xn + 3yn, yn+1 = xn + 2yn with x1 = 2, y1 = 1.
Show that for each integer n ≥ 1, there is a positive integer Kn such that

x2n+1 = 2
(
K2

n + (Kn + 1)2
)

.

67. Suppose that ABCD is a tetrahedron and its four altitudes AA1, BB1, CC1, DD1

intersect at the point H. Let A2, B2, C2 be points on AA1, BB1, CC1 respectively such that
AA2 : A2A1 = BB2 : B2B1 = CC2 : C2C1 = 2 : 1. Show that the points H, A2, B2, C2, D1

are on a sphere.
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68. The nonnegative real numbers a, b, c, A, B, C and k satisfy a+A = b+B = c+C = k.
Prove that aB + bC + cA ≤ k2.

69. Find the least constant C such that the inequality

x1x2 + x2x3 + ... + x2000x2001 + x2001x1 ≤ C

holds for any
∑2001

i=1 xi = 2001, x1, ..., x2001 ≥ 0. For this constant C, determine the
instances of equality.

70. Let D be a point inside an acute triangle ABC such that

DA ·DB ·AB + DB ·DC ·BC + DC ·DA · CA = AB ·BC · CA.

Determine the geometric position of D.

71. Consider the polynomial p(x) = x2001 + a1x
2000 + a2x

1999 + ... + a2000x + 1. where
all the ai’s are nonnegative. If the equation p(x) = 0 has 2001 real roots, prove that
p(2001) ≥ 20022001.

72. Let a, b, c, d be nonnegative real numbers such that a + b + c + d = 1. Prove that
bcd + cda + dab + abc ≤ 1

27 + 176
27 abcd. Determine when equality holds.

73. A sequence {ak} satisfies the following conditions:

(a) a0 = 1
2001 ,

(b) ak+1 = ak + 1
na2

k , k = 0, 1, 2, ..., n.

Prove that 1− 1
2000n < 2000an < 1.

13
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74. Let ABC be an equilateral triangle. Draw the semicircle Γ which has BC as its
diameter, where Γ lies on the opposite side of BC as A. Show that the straight lines
drawn from A that trisect the line BC also trisect Γ when they are extended.

75. ABC is an equilateral triangle. P is the midpoint of arc AC of its circumcircle, and
M is an arbitrary point of the arc. N is the midpoint of BM and K is the foot of the
perpendicular from P to MC. Prove that ANK is an equilateral triangle.

76. Two concentric circles are given with a common centre O. From a point A on the
outer circle, two tangents to the inner circle are drawn, meeting the latter at D and E
respectively. AD and ED are extended to meet the outer circle at C and B respectively.
Show that (AB

BC )2 = BE
BD .

77. Ali Baba the carpet merchant has a rectangular piece of carpet whose dimensions
are unknown. Unfortunately, his tape measure is broken and he has no other measuring
instruments. However, he finds that if he lays it flat on the floor of either of his storerooms,
then each corner of the carpet touches a different wall of that room. He knows that the
sides of the carpet are integral numbers of feet, and that his two storerooms have the
same (unknown) length, but widths of 38 and 50 feet respectively. What are the carpet’s
dimensions?

78. Let I be the incentre of the non-isosceles triangle ABC. Let the incircle of ABC
touch the sides BC, CA and AB at the points A1, B1 and C1 respectively. Prove that the
circumcentres of ∆AIA1, ∆BIB1 and ∆CIC1 are collinear.

14
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1. Consider the set of integers A = {2a3b5c : 0 ≤ a, b, c ≤ 5}. Find the smallest number n
such that whenever S is a subset of A with n elements, you can find two numbers p, q in
A with p | q.

Soln. Identify a number 2a3b5c in A by its triple of indices abc. Thus 000 represents
203050 while 213 represents 223153. Consider the following arrangement of numbers into
16 rows.

000
100
200 110
300 111 210 120
400 211 310 130 220
500 311 410 140 320 302 221
510 411 420 240 321 312 330 222
520 511 430 340 421 412 331 322
530 521 440 341 431 512 332 422
540 531 441 342 432 513 333 522
550 541 442 352 532 514 433
551 542 443 353 524
552 543 444 534
553 544
554
555

Turn the first column in 6 by considering the six permutations and turn each of the other
columns into 3 by considering the cyclic permutations. Note that (i) every number is one
of the rows, (ii) every two numbers in the same row do not divide each other (iii) for every
two numbers in the same column, one must divided the other. Since the row with the most
elements is 27, the answer is 28.

(Joel’s soln) The problem is equivalent to the following: Consider the ordered triples
of the form {(a, b, c) : 0 ≤ a, b, c ≤ 5}. Find the smallest number n such that if there are
n such triples, you can always find two (p, q, r) and (x, y, z) such that p ≥ x, q ≥ y, and
r ≥ z. If this is the case, we say that the two triples are comparable.

First we note that any two triples are comparable if their second and third elements
are the same. Let A be a set of pairwise noncomparable triples. Since there are 36 possible
combinations for (b, c), A has at most 36 triples. Examine the sequence of 11 triples in
order:

(a, 0, 0), (a, 0, 1), (a, 0, 2), (a, 0, 3), (a, 0, 4), (a, 0, 5), (a, 1, 5), (a, 2, 5), (a, 3, 5), (a, 4, 5), (a, 5, 5).
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For these to be in A, the first elements have to be strictly decreasing. Thus at most 6
of these can be in A or at least 5 cannot be in A. Similarly, at least three of the following
triples

(a, 1, 0), (a, 2, 0), (a, 3, 0), (a, 4, 0), (a, 5, 0), (a, 5, 1), (a, 5, 2), (a, 5, 3), (a, 5, 4)

and at least 1 of the following triples:

(a, 1, 1), (a, 1, 2), (a, 1, 3), (a, 1, 4), (a, 2, 4), (a, 3, 4), (a, 4, 4)

are not in A. Thus A can have at most 27 triples and if 28 triples are chosen, then at least
two of them are comparable. Below is a collection of 27 pairwise noncomparable triples
(the sum of the 3 components is 7):

(0, 2, 5), (0, 3, 4), (0, 4, 3), (0, 5, 2), (1, 1, 5), (1, 2, 4), (1, 3, 3),
(1, 4, 2), (1, 5, 1), (2, 0, 5), (2, 1, 4), (2, 2, 3), (2, 3, 2), (2, 4, 1),
(2, 5, 0), (3, 0, 4), (3, 1, 3), (3, 2, 2), (3, 3, 1), (3, 4, 0), (4, 0, 3),
(4, 1, 2), (4, 2, 1), (4, 3, 0), (5, 0, 2), (5, 1, 1), (5, 2, 0)

So the answer is 28.

2. (Byelorrussian MO 95) “Words” are formed with the letters A and B. Using the words
x1, x2, . . ., xn we can form a new word if we write these words consecutively one next to
another: x1x2 . . . xn. A word is called a palindrome, if it is not changed after rewriting its
letters in the reverse order. Prove that any word with 1995 letters A and B can be formed
with less than 800 palindromes.

Soln. Official solution: (The key idea is to find the longest word that can be formed using
at most 2 palindromes.) First of all, it is easy to check that any 5-letter word may be
formed with at most two palindromes. Indeed, (A and B are symmetric).

AAAAA = AAAAA, AAAAB = AAAA + B, AAABA = AA + ABA,
AAABB = AAA + BB, AABAA = AABAA, AABAB = AA + BAB,
AABBA = A + ABBA, AABBB = AA + BBB, ABAAA = ABA + AA,
ABAAB = A + BAAB, ABABA = ABABA, ABABB = ABA + BB,
ABBAA = ABBA + A, ABBAB = ABBA + B, ABBBA = ABBBA,
ABBBB = A + BBBB.

Let us consider an arbitrary word with 1995 letters and divide it into words with
5 letters each. Each of these 1995/5 = 399 words may be formed with at most two
palindromes. Thus any 1995-letter word may be formed with at most 399 × 2 = 798
palindromes.

3. (49th Romania National MO 1998) (10th Form) Let n ≥ 2 be an integer and M =
{1, 2, . . . , n}. For every k ∈ {1, 2, . . . , n− 1}, let

xk =
1

n + 1

∑
A⊂M
|A|=k

(minA + max A).
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Prove that x1, x2, . . . , xn−1 are integers, not all divisible by 4.

Soln. For each i ∈ {1, 2, . . . , n}, there are
(

n−i
k−1

)
subsets, each with k elements and contains

i as the minimum element. (Note that
(
n
k

)
= 0 if k > n.) Also there are

(
i−1
k−1

)
subsets,

each with k elements and contains i as the maximum element. Thus

xk =
1

n + 1

∑
A⊂M
|A|=k

(minA + max A)

=
1

n + 1

[
1
(

n− 1
k − 1

)
+ 2

(
n− 2
k − 1

)
+ · · ·+ (n + 1− k)

(
k − 1
k − 1

)

+ n

(
n− 1
k − 1

)
+ (n− 1)

(
n− 2
k − 1

)
+ · · ·+ k

(
k − 1
k − 1

)]

=
(

n

k

)

Thus x1, . . . , xn−1 are all integers. Since x1 + · · ·+ xn−1 =
(
n
1

)
+ · · ·+ (

n
n−1

)
= 2n− 2, not

all of x1, . . . , xn−1 are divisible by 4.

(2nd Solution) For each k element subset A = {a1, . . . , ak} with ai < aj if i < j, with
a1 = 1 + p and ak = n − q, let B = {b1, . . . , bk}, where bi = ai + q − p. We have
min A + min B + max A + max B = 2n + 2. Since the number of k element subsets is

(
n
k

)
,

we have

xk =
1

n + 1

∑
A⊂M
|A|=k

(min A + max A) =
1

n + 1

(
n

k

)
2n + 2

2
=

(
n

k

)
.

Here’s a sketch/hint for 3: For each set A, consider the set A′:

A′ = {n + 1− x|x ∈ A}

Then, minA = n + 1 − max A′. Do the usual summation rewriting, and you can
compute xk explicitly to be some binomial function. The other bit follows readily too
using another standard trick.

4. (Byelorrussian MO 95) The lattice frame construction of 2× 2× 2 cube is formed with
54 metal shafts of length 1 (points of shafts’ connection are called junctions). An ant starts
from some junction A and creeps along the shafts in accordance with the following rule:
when the ant reaches the next junction it turns to a perpendicular shaft. At some moment
the ant reaches the initial junction A; there is no junction (except for A) where the ant
has been twice. What is the maximum length of the ant’s path?

Soln. Official solution: The maximum length of an ant’s path is equal to 24. First we
prove that the path along which the ant creeps, has at most 24 junctions of the shafts of
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the cube frame. By the condition, any two consecutive shafts in the path (except possibly
for the first and the last shafts) are perpendicular. In particular, the ant’s path passes at
most one shaft on all but one edge of the cube. Thus there are at most 13 shafts along the
edges of the cube. However, each vertex in the path requires two shafts. Thus the path
misses at least two vertices of the cube. Hence the ant’s path passes through at most 25
junctions of the shafts. The ant’s path consists of an even number of junctions. This is
easily seen to be true by taking the starting point as the origin and the three mutually
perpendicular lines passing through it as the axes and assume that each shaft is of unit
length. Then each move by the ant causes exactly a change of one unit in one of the
coordinates. Thus the total number of moves is even. Thus the length of the path is at
most 24. A path of length 24 is shown in the figure.
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5. Let n black and n white objects be placed on the circumference of a circle, and define
any set of m consecutive objects from this cyclic sequence to be an m-chain.

(a) Prove that for each natural number k ≤ n, there exists a chain of 2k consecutive
pieces on the circle of which exactly k are black.

(b) Prove that there are at least two such chains that are disjoint if

k ≤ √
2n + 2− 2

.

Soln. (a) Label the positions 1, 2, . . . , 2n in the clockwise direction. For each i, if the
object is i is black, let ai = 1. Otherwise, let ai = −1. Fix k ≤ n. Define the function
g(i) =

∑i+2k−1
j=i aj . Then there is a chain of 2k consecutive pieces of which exactly k are

black iff g(i) = 0 for some i. Since
∑2n

i=1 g(i) = 0, and since g(i + 1)− g(i) = ±2, 0, such a
g(i) exists.

(b): Suppose on the contrary that there does not exist 2 disjoint chains. WLOG,
we may assume from (a) that g(2k) = 0 and g(2k + 1), . . . g(2n) are all nonzero, and
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by the same continuity argument, they must all be of the same sign. WLOG, assume
g(2k + 1), . . . , g(2n) < 0 and thus g(2k), . . . , g(2n− 1) ≤ −2. Therefore, we have:

g(1) + . . . + g(2k) = −(g(2k + 1) + . . . + g(2n)) ≥ 2(2n− 2k)

Thus, the sum on the left is maximum when g(1) = 0, g(1) = 2, . . . , g(k) = g(k + 1) =
2(k − 1), . . . , g(2k) = 0, that is, g(1), . . . , g(k) forms an increasing arithmetic progression
with a difference of 2, and g(k + 1), . . . , g(2k) forms a decreasing arithmetic progression
with a difference of −2. This yields:

2(k − 1)2 ≥ 2(2n− 2k) =⇒ k2 + 4k + 4 > 2n + 2

which yields the required result.

Solutions for 29-9-2001

6. We are given 1999 rectangles with sides of integer not exceeding 1998. Prove that
among these 1999 rectangles there are rectangles, say A, B and C such that A will fit
inside B and B will fit inside C.

Soln. (T& T Spring 1989 Q6, modified slightly). We partition the given set of rectangles
into 999 suitably chosen (pairwise disjoint) subsets S1, . . ., S999. These are defined as
follows:

For each i ∈ {1, . . . , 999}, let Si be the set of rectangles which have the following
properties:

(a) the shorter side has length at least i,

(b) the longer side has length at most 1998− i,

(c) either the shorter side has length i or the longer side has length 1998− i.

Any three rectangles in Si can always be arranged with the desired inclusion property.
Thus the result follows by the pigeon hole principle.

7. We are given N lines (N > 1) in a plane, no two of which are parallel and no three
of which have a point in common. Prove that it is possible to assign, to each region of
the plane determined by these lines, a non-zero integer of absolute value not exceeding N ,
such that the sum of the integers on either side of any of the given lines is equal to 0.

Soln. (Tournament of Towns Spring 1989 Q5). First note the regions can be painted
in two colours so that two regions sharing a common side have different colours. This is
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trivial for N = 1. Assume that it is true for N = k. When the (k + 1)st line is drawn we
simply reverse the colours on exactly one side of this line.

Assign to each region an integer whose magnitude is equal to the number of vertices
of that region. The sign is + is the region is one of the two colours and − if it is the other
colour. Let L be one of the given lines. Consider an arbitrary vertex on one side of L. If
this vertex is on L, then it contributes = 1 to one region and −1 to a neighbouring region.
If it is not on L, it contributes = 1 to two regions and −1 to two regions. Thus the sum
of the numbers of one side of L is 0.

8. (APMO 99) Let S be a set of 2n+1 points in the plane such that no three are collinear
and no four concyclic. A circle will be called good if it has 3 points of S on its circumference,
n− 1 points in its interior and n− 1 in its exterior. Prove that the number of good circles
has the same parity as n.

Soln. For any two points A and B, let P1, P2, . . ., Pk be points on one side of the line
AB and Pk+1, . . ., P2n−1 be points on the other side. We shall prove that the number of
good circles passing through A and B is odd. Let

θi =
{

∠APiB if i = 1, . . . , k
180◦ − ∠APiB if i = k + 1, . . . , 2n− 1

It is easy to see that Pj is in the interior of the circle ABPi, if and only if

{
θj > θi for 1 ≤ j ≤ k
θj < θi for k + 1 ≤ j ≤ 2n− 1 .

Arrange the points Pi in increasing order of their corresponding angles θi. Colour the
points Pi, i = 1, . . . , k, black and the points Pi, i = k +1, . . . , 2n− 1, white. For any point
X (different from A and B), let BX be the number of black points less than X minus the
number of black points greater than X and WX be the corresponding difference for white
points. (Note that black points which are greater than X are interior points of the circle
ABX while the white points greater than X are exterior points.) Define DX = BX −WX .
From the forgoing discussion we know that 4ABX is good if and only if DX = 0. We call
such a point good . If X < Y are consecutive points, then DX = DY if X and Y are of
different colours. (It is easy to show that DY −DX = −2 if X and Y are both white and
DY −DX = 2 if X and Y are both black. But we do not need these.)

If all the points are of the same colour, there is only one good point, namely the
middle point among the Pi’s.

Now we suppose that there are points of either colour. Then there is a pair of adjacent
points, say X, Y , with different colour. Since DX = DY , either both are good or both are
not good. Their removal also does not change the value of DZ for any other point Z. Thus
the removal of a pair of adjacent points of different colour does not change the parity of
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the number of good points. Continue to remove such pairs until only points of the same
colour are left. When this happens there is only one good point. Thus the number of good
circles through A and B is odd.

Now let gAB be the number of good circles through A and B. Since each good circle
contains exactly three points, i.e., three pairs of points. Then

∑
gAB = 3g where g is total

number of good circles. Since there are a total of n(2n + 1) terms in the sum, and each
term is odd, we have g ≡ n (mod 2).

Solutions for 27-10-2001

19. For any positive real numbers a, b, c,

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2

Soln. Let x = a + b, y = a + c, z = b + c, then

a

b + c
+

b

c + a
+

c

a + b
≥ 1

2

(
x

y
+

y

x
+

x

z
+

z

x
+

y

z
+

z

y
− 3

)
≥ 3

2
.

Soln 2.
[

a

b + c
+

b

c + a
+

c

a + b

]
[a(b + c) + b(c + a) + c(a + b)] ≥ (a + b + c)2.

Thus
a

b + c
+

b

c + a
+

c

a + b
≥ (a + b + c)2

2(ab + ac + bc)
.

Also
(a + b + c)2 = (a2 + b2 + c2) + 2(ab + bc + ac) ≥ 3(ab + bc + ac).

Thus
(a + b + c)2

a(b + c) + b(c + a) + c(a + b)
≥ 3

2
.

Soln 3. Since the inequality is symmetric about a, b, c, we may assume that a ≥ b ≥ c > 0.
Then,

1
b + c

≥ 1
a + c

≥ 1
a + b

.
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By rearrangement inequality, we have

a

b + c
+

b

c + a
+

c

a + b
≥ a

c + a
+

b

a + b
+

c

b + c
,

a

b + c
+

b

c + a
+

c

a + b
≥ a

a + b
+

b

b + c
+

c

c + a
.

The inequality follows by adding these two inequalities.

20. Let a, b, c be positive numbers such that a + b + c ≤ 3. Prove that

1
1 + a

+
1

1 + b
+

1
1 + c

≥ 3
2
.

Soln. Apply AM ≥ HM on the three numbers a + 1, b + 1, c + 1 we have

1
1 + a

+
1

1 + b
+

1
1 + c

≥ 9
(1 + a) + (1 + b) + (1 + c)

≥ 3
2
.

Soln 2. Using Cauchy’s inequality and denoting the denominators by x, y, z:

( 1
x

+
1
y

+
1
z

)
(x + y + z) ≥ 9.

Thus
1
x

+
1
y

+
1
z
≥ 9

3 + a + b + c
≥ 3

2
.

21. Prove that for any positive real numbers a, b, c,

a

10b + 11c
+

b

10c + 11a
+

c

10a + 11b
≥ 1

7
.

Soln. We shall prove a more general inequality:

a

mb + nc
+

b

mc + na
+

c

ma + nb
≥ 3

m + n
,

where m,n are positive real numbers.

Write the denominators as A,B, C respectively. By Chauchy-Schwarz inequality, we
have [

a

A
+

b

B
+

c

C

]
[aA + bB + cC] ≥ (a + b + c)2.
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Since aA + bB + cC = (m + n)(ab + bc + ca) and 3(ab + bc + ca) ≤ (a + b + c)2, the result
follows.

Soln 2. The inequality can also be proved by clearing the denominator and moving all
terms to the left hand side. After some simplification, the resulting inequality to be proved
is equivalent to

770(a3 + b3 + c3)− 253(a2b + b2c + c2a)− 510(a2c + b2a + c2b)− 21abc ≥ 0.

By rearrangement inequality, we have a3 + b3 + c3 ≥ a2b + b2c + c2a and a3 + b3 + c3 ≥
a2c + b2a + c2b. Using these and a3 + b3 + c3 ≥ 3abc, the above inequality follows.

22. Prove that for any positive real numbers ai, i = 1, . . . 5,

5∑

i=1

ai

ai+1 + 2ai+2 + 3ai+3 + 4ai+4
≥ 1

2

where the subscripts are to be taken mod 5.

Soln. Use the same method as in the previous problem. The only extra thing that you
have to note is that ∑

a2
i ≥

1
2

∑

1≤i<j≤5

aiaj .

23. (SMO2001) Let n be a positive integer and let a1, a2, . . ., an be n positive real numbers
such that a1 + a2 + · · ·+ an = 1. Is it true that

a4
1

a2
1 + a2

2

+
a4
2

a2
2 + a2

3

+ · · ·+ a4
n

a2
n + a2

1

≥ 1
2n

?

Soln. The answer is yes. First observe that
(

a4
1

a2
1 + a2

2

+
a4
2

a2
2 + a2

3

+ · · ·+ a4
n

a2
n + a2

1

)
−

(
a4
2

a2
1 + a2

2

+
a4
3

a2
2 + a2

3

· · ·+ a4
1

a2
n + a2

2

)
= 0.

Thus
a4
1

a2
1 + a2

2

+
a4
2

a2
2 + a2

3

+ · · ·+ a4
n

a2
n + a2

1

=
1
2

(
a4
1 + a4

2

a2
1 + a2

2

+
a4
2 + a4

3

a2
2 + a2

3

+ · · ·+ a4
n + a4

1

a2
n + a2

1

)

≥ 1
4
[(a2

1 + a2
2) + · · ·+ (a2

n + a2
1)]

=
1
2
(a2

1 + · · ·+ a2
n) ≥ 1

n
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which completes the proof. The last inequality follows as
√

a2
1 + · · ·+ a2

n

n
≥ a1 + · · ·+ an

n
=

1
2n

.

Soln 2. Denote the denominators by A1, A2, . . . , An. Then
[

a4
1

A1
+

a4
2

A2
+ · · ·+ a4

n

An

]
[A1 + A2 + · · ·+ An] ≥ (a2

1 + a2
2 + · · ·+ a2

n)2.

But
A1 + A2 + · · ·+ An = 2(a2

1 + · · ·+ a2
n).

Thus we only need to prove

a2
1 + a2

2 + · · ·+ a2
n ≥

1
n

.

24. Let a, b, c, d be nonnegative real numbers such that ab + bc + cd + da = 1. Prove that

a3

b + c + d
+

b3

a + c + d
+

c3

a + b + d
+

d3

a + b + c
≥ 1

3
.

Soln. (NT-ST 2001, IMO proposed 1991) By Cauchy-Schwarz Inequality,

a2 + b2 + c2 + d2 ≥ ab + bc + cd + da = 1.

Assume without loss of generality that a ≥ b ≥ c ≥ d ≥ 0. Then

1
b + c + d

≥ 1
a + c + d

≥ 1
a + b + d

≥ 1
a + b + c

> 0.

Using Chebyshev’s Inequality twice followed by AM ≥ GM , and writing x = b+ c+d, y =
c + d + a, z = d + a + b, w = a + b + c, we have

a3

x
+

b3

y
+

c3

z
+

d3

w
≥a3 + b3 + c3 + d3

4

(
1
x

+
1
y

+
1
z

+
1
w

)

≥ (a2 + b2 + c2 + d2)(a + b + c + d)
16

(
1
x

+
1
y

+
1
z

+
1
w

)

≥a + b + c + d

16

(
1
x

+
1
y

+
1
z

+
1
w

)

≥ (x + y + z + w)
3× 16

(
1
x

+
1
y

+
1
z

+
1
w

)

≥4(xyzw)
1
4

3× 16

(
1
x

+
1
y

+
1
z

+
1
w

)

≥4× 4(xyzw)
1
4

3× 16
1

(xyzw)
1
4
≥ 1

3
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Soln 2. Let the denominators be A,B, C, D. Then
[
a3

A
+ · · ·+ d3

D

]
[aA + · · ·+ dD] ≥ (a2 + · · ·+ d2)2.

Thus we need to prove
(a2 + · · ·+ d2)2

2 + 2ac + 2bd
≥ 1

3
.

Since 2ac ≤ a2 + c2 and 2bd ≤ b2 + d2, we need to prove

x2

2 + x
≥ 1

3
, or 3x2 − x− 2 = (3x + 2)(x− 1) ≥ 0

which is obviously true since x = a2 + · · ·+ d2 ≥ 1.

25. (IMO 95) Let a, b and c be positive real numbers such that abc = 1. Prove that

1
a3(b + c)

+
1

b3(a + b)
+

1
c3(a + b)

≥ 3
2
.

Soln. Let S be the right hand side and T = a(b+c)+b(a+c)+c(a+b) = 2(ab+ac+bc) ≥
6(abc)2/3 = 6. Then by Cauchy’s inequality, we have

ST ≥
(

1
a

+
1
b

+
1
c

)2

=
T 2

4
.

Thus S ≥ T/4 ≥ 3/2 as desired.

Second Solution Let x = 1/a. y = 1/b, z = 1/c. Then xyz = a and

S =
x2

y + z
+

y2

x + z
+

z2

x + y
.

By Cauchy’s inequality,

[(x + y) + (z + x) + (x + y)]S ≥ (x + y + z)2

or S ≥ (x+y+z)
2 ≥ 3

2 (xyz)1/3 = 3
2 as desired.

Solutions for 3-11-2001

26. A sequence of natural numbers {an} is defined by a1 = 1, a2 = 3 and

an = (n + 1)an−1 − nan−2 (n ≥ 2).
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Find all values of n such that 11|an.

Soln. Rearranging the recurrence relation, we obtain: an − an−1 = n(an−1 − an−2).
Substituting bn = an − an−1, we find that bn = nbn−1 = n(n− 1)bn−2 = . . . = n!. Hence,
an = 1! + 2! + . . . + n!. One can easily verify that 11|a4, a8, a10. Since 11|a10 and 11|i! for
all i ≥ 11, this implies that 11|an for all n ≥ 10. So the required answers are: n = 4, 8 and
n ≥ 10.

27. Let{xn}, n ∈ N be a sequence of numbers satisfying the condition

|x1| < 1, xn+1 =
−xn +

√
3− 3x2

n

2
, (n ≥ 1).

(a) What other condition does x1 need to satisfy so that all the numbers of the
sequence are positive?

(b) Is the given sequence periodic?

Soln.

(a) For the sequence to be positive, we require 3− 3x2
n ≥ x2

n, ie that |xn| ≤
√

3
2 . One

can easily check by plugging into the recurrence relation that when |xn| ≤
√

3
2 ,

then |xn+1| ≤
√

3
2 also, so the entire sequence will be positive. Hence, the required

condition is |x1| ≤
√

3
2 .

(b) Substitute xn = sin θn into the recurrence relation. After some simplification, we
find that xn+1 = − 1

2 sin θn +
√

3
2 cos θn = sin(π

3 − θn). Hence, xn+2 = xn and the
sequence is periodic.

28. Suppose that a function f defined on the positive integers satisfies f(1) = 1, f(2) = 2,
and

f(n + 2) = f(n + 2− f(n + 1)) + f(n + 1− f(n)), (n ≥ 1).

(a) Show that 0 ≤ f(n + 1)− f(n) ≤ 1.

(b) Show that if f(n) is odd, then f(n + 1) = f(n) + 1.

(c) Determine, with justification, all values of n for which f(n) = 210 + 1.

Soln. The key is to show that given n = 2k + m, where 0 ≤ m ≤ 2k − 2, then f(n) =
f(m + 1) + 2k−1. Also, if n = 2k + 2k − 1 = 2k+1 − 1, then f(n) = 2k. This can be done
using strong induction on k. Notice that this helps us to express all the values of f(n) from
n = 2k to 2k+1, in terms of the values of f(n) from n = 0 to n = 2k − 1. (We can define
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f(0) = 0 for convenience; this definition is consistent with the recurrence relation.) Once
we have established this claim, parts (a) and (b) follow essentially by induction. Also,
the answer to (c) is n = 211. (Endnote: The key to solving this question would be to
list out the values and try to find a pattern, which can then be rigorously justified using
induction.)

29. Determine the number of all sequences {x1, x2, . . . , xn}, with xi ∈ {a, b, c} for i =
1, 2, . . . , n that satisfy x1 = xn = a and xi 6= xi+1 for i = 1, 2, . . . , n− 1.

Soln. Let the number of sequences for which x1 = xn = a be An. Define Bn to be the
number of sequences with x1 = a, xn = b, and let Cn be the number of sequences with
x1 = a, xn = c. Notice by symmetry that Bn = Cn (just simply switch the b’s and c’s in the
sequence). Notice that An = Bn−1 + Cn−1 = 2Bn−1, since any sequence of length n that
ends with a is generated by a sequence of length n−1 which ends with b or c. (Conversely,
given a sequence of length n− 1 that ends with b or c, we can simply append a to obtain
a sequence of length n which ends with a.) Similarly, Bn = An−1 + Cn−1 = An−1 + Bn−1,
since any sequence of length n that ends with b must be generated by a sequence of length
n − 1 generated with a or c. Having established this simultaneous system of recurrence
relations, we substitute and solve for Bn = Bn−1 + 2Bn−2, B1 = 0, B2 = 1. Solving, we
obtain that An = 2Bn−1 = 2

3 [ 2n−2 + (−1)n−1] .

30. Given is a prime p > 3. Set q = p3. Define the sequence {an} by:

an =
{

n for n = 0, 1, 2, . . . , p− 1,
an−1 + an−p for n > p− 1.

Determine the remainder when aq is divided by p.

Soln. (This remains an open question. I suspect the key is to prove that ap2−1 ≡ a0 (mod
p), from which it follows that ap3 ≡ p− 1 (mod p).)

31. A and B are two candidates taking part in an election. Assume that A receives m
votes and B receives n votes, where m,n ∈ N and m > n. Find the number of ways in
which the ballots can be arranged in order that when they are counted, one at a time, the
number of votes for A will always be more than that for B at any time during the counting
process.

Soln. We model the vote counting process on the Cartesian plane. Starting at (0, 0), we
move to (1, 1) if the first vote goes to A, else we move to (1,−1) if the first vote goes to B
instead. Notice that this walk will end at (m+n,m−n). The number of ways of counting
in which the number of votes A gets is always more than that which B has is equal to the
number of paths on the plane from (0, 0) to (m+n, m−n) that do not cross the x-axis. We
count the complement of this set, ie the number of paths that do cross the x-axis. Notice
that the first vote must go to A. Starting from (1, 1), the number of paths that cross the
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x-axis and end at (m+n,m−n) is equal to the number of paths (unrestricted) from (1,−1)
to (m + n,m− n). To see this, take any given path from (1, 1) to (m + n,m− n) and let
X be the first point of intersection with the x-axis. Reflect the portion of this path to the
left of X about the x-axis and we have a path from (1,−1) to (m + n,m− n). Vice versa,
we can take any such path from (1,−1) to (m+n,m−n) and reflect it back uniquely. The
number of paths from (1,−1) to (m + n,m − n) is

(
m+n−1

m

)
, since you need to choose m

steps upwards out of a possible m + n − 1. Similarly, the number of paths from (1, 1) to
(m + n,m−n) is

(
m+n−1

m−1

)
. Hence, the number of paths from (0, 0) to (m + n,m−n) that

do not cross the x-axis is
(
m+n−1

m−1

)− (
m+n−1

m

)
= m−n

m+n

(
m+n

m

)
.

Solutions for 10-11-2001

32. (Auckland MO 98) Find all prime numbers p for which the number p2 +11 has exactly
6 different divisors (including 1 and the number itself.)

Soln. If p = 3, p2 + 11 has exactly 6 divisors. Now let p > 3. Then p is odd and p2 ≡ 1
(mod 4), thus p2 + 11 ≡ 0 (mod 4). Also p2 ≡ 1 (mod 3), thus p2 + 11 ≡ 0 (mod 3).
Thus p2 + 11 ≡ 0 (mod 12). Since every p2 + 11 > 12 and every divisor of 12 is also a
divisor of p2 +11, it follows that p2 +11 has more divisors than 12. Thus p2 +11 has more
than 6 divisors. The only prime number with the desired property is therefore 3.

33. (IMO 98) Determine all pairs (a, b) of positive integers such that ab2 + b + 7 divides
a2b + a + b.

Soln. Since ab2 + b + 7|b(a2b + a + b) and a2b2 + ab + b2 = a(ab2 + b + 7) + (b2 − 7a), we
have either b2 − 7a = 0 or b2 − 7a is a multiple of ab2 + b + 7. The former implies that
b = 7t and a = 7t2. Indeed these are solutions for all positive t.

For the second case, we note that b2 − 7a < ab2 + b + 7. Thus b2 − 7a < 0. If b ≥ 3,
then ab2 + b + 7 > 7a− b2. Thus for ab2 + b + 7 to divide 7a− b2, b = 1, 2. The case b = 1
requires that 7a − 1 be divisible by a + 8. The quotients are less than 7. Testing each of
the possibilities yields a = 49, 11. These are indeed solutions.

The case b = 2 requires that 7a− 4 be divisible by 4a + 11. The quotient has to be 1
and this is clearly impossible.

34. Let p be an odd prime. Prove that

1p−2 + 2p−2 + 3p−2 + · · ·+
(

p− 1
2

)p−2

≡ 2− 2p

p
(mod p).
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Soln. All the congruences are taken mod p. For each 0 < i < p, we have ip−1 ≡ 1. Thus
ip−2 ≡ 1

i . So

1p−2 + 2p−2 + 3p−2 + · · ·+
(

p− 1
2

)p−2

≡ 1
1

+
1
2

+ · · ·+ 1
(p− 1)/2

.

On the other hand

2− 2p

p
=

2− (1 + 1)p

p
=

1
p

p−1∑

i=1

−
(

p

i

)
≡

p−1∑

i=1

(−1)i 1
i
≡ −

p−1∑

i=1

1
i

+ 2
p−1∑

i=1

1
2i
≡

(p−1)/2∑

i=1

1
i
.

The last congruence follows because 1
i + 1

p−i ≡ 0.

Soln 2. First, for each i = 1, 2, · · · , p−1
2 ,

2i

p

(
p

2i

)
=

(p− 1)(p− 2) · · · (p− (2i− 1))
(2i− 1)!

≡ (−1)(−2) · · · (−(2i− 1))
(2i− 1)!

≡ −1 (mod p).

Hence
(p−1)/2∑

i=1

ip−2 ≡ −
(p−1)/2∑

i=1

ip−2 2i

p

(
p

2i

)

≡ −2
p

(p−1)/2∑

i=1

ip−1

(
p

2i

)

≡ −2
p

(p−1)/2∑

i=1

(
p

2i

)
(mod p) by Fermat’s Theorem.

The last summation counts the even-sized nonempty subsets of a p-element set, of which
there are 2p−1 − 1.

35. (Ukrainian MO 97) (10th grade) Let d(n) denote the greatest odd divisor of the natural
number n. Define the function f : N→ N by f(2n− 1) = 2n, f(2n) = n + 2n/d(n) for all
n ∈ N. Find all k such that f(f(. . . (1) . . .)) = 1997 where f is iterated k times.

Soln. Let a1 = 1 and an+1 = f(an) for n ≥ 1. Then a1 = 1, a2 = 2, a3 = 3 and so on.
After a few more terms, it is easy to notice that if am = 2j , then am+j+1 = 2j+1. This
can be proved as follows. Let am = 2j . Then

am+1 = 2j−1 + 2j = 3 · 2j−1;

am+2 = 3 · 2j−2 + 2j−1 = 5 · 2j−2;

Thus we can ofrmulate the following induction hypothesis:

am+i = (2i + 1)2j−i, i = 0, 1, . . . , j.
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am+i+1 = (2i + 1)2j−i−1 + 2j−i = (2(i + 1) + 1)2j−i−1.

Thus the result follows by induction. Since a1 = 20, we can find write down a formula
for an as follows. If n = (0 + 1 + 2 + · · · + p) + 1 + q, where p ≥ 0, 0 ≤ q ≤ p, then
an = (2q + 1)2p−q. If (2q + 1)2p−q = 1997, then p = q = 998. Thus a499500 = 1997. Thus
k = 499499.

36. (Byelorrussian MO 95) Given three real numbers such that the sum of any two of
them is not equal to 1, prove that there are two numbers x and y such that xy/(x+ y− 1)
does not belong to the interval (0, 1).

Soln. Official solution: Let a, b, c be the given numbers. Suppose that each of the numbers

A =
ab

a + b− 1
, B =

ac

a + c− 1
, C =

bc

b + c− 1
.

belongs to (0, 1). Then A > 0, B > 0, C > 0 and

ABC =
a2b2c2

(a + b− 1)(a + c− 1)(b + c− 1)
> 0.

Hence
D = (a + b− 1)(a + c− 1)(b + c− 1) > 0. (∗)

On the other hand, A− 1 < 0, B − 1 < 0, C − 1 < 0. Thus (A− 1)(B − 1)(C − 1) < 0. It
is easy to verify that

A− 1 =
(a− 1)(b− 1)

a + b− 1
, B − 1 =

(a− 1)(c− 1)
a + c− 1

, C − 1 =
(b− 1)(b− 1)

b + c− 1
.

Consequently,

(A− 1)(B − 1)(C − 1) =
(a− 1)2(b− 1)2(c− 1)2

(a + b− 1)(a + c− 1)(b + c− 1)
< 0

contradicting (∗). This proves the statement.

Solutions for 24-11-2001

52. Determine all α ∈ R such that there exists a nonconstant function f : R → R such
that

f(α(x + y)) = f(x) + f(y).

Soln. For α = 1, f(x) = x satisfies the functional equation. For α 6= 1, let y = αx
1−α , but

this implies f(y) = f(x) + f(y), hence f(x) = 0.
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53. Let f : N→ N be a function satisfying

(a) For every n ∈ N, f(n + f(n)) = f(n).

(b) For some n0 ∈ N, f(n0) = 1.

Show that f(n) = 1 for all n ∈ N.

Soln. Note that f(n0 + 1) = f(n0 + f(n0)) = f(n0) = 1. Hence f(n) = 1 for all n ≥ n0.
Let S = {n ∈ N|f(n) 6= 1}. If S = ∅, then we are done. So suppose S 6= ∅, let
M = supS = maxS, since S is a finite set. Then f(M + f(M)) = f(M) 6= 1. Hence
M + f(M) ∈ S, but M + f(M) > M , contradicting the maximality of M . Hence S = ∅,
f(n) = 1 for all n ∈ N
54. Suppose that f : N→ N satisfies f(1) = 1 and for all n,

(a) 3f(n)f(2n + 1) = f(2n)(1 + 3f(n)),

(b) f(2n) < 6f(n).

Find all (k, m) such that f(k) + f(m) = 2001.

Soln. Note that gcd(3f(n), 1 + 3f(n)) = 1, hence 3f(n)|f(2n). But f(2n) < 6f(n),
hence f(2n) = 3f(n), f(2n + 1) = 3f(n) + 1.Claim: If n = (b1b2 · · · bn)2 , then f(n) =
(b1b2 · · · bn)3.This is a simple exercise in induction (induct on n, consider n odd and n
even separately) and is left to the reader. Then to find integers k, m such that f(k) +
f(m) = 2001, let us first write 2001 in its tenary representation. Now 2001 = 22020103.
We note that the tenary representations of f(k), f(m) can only contain 0 and 1’s, hence
there are also no carry-overs from the addition. Hence the possible pairs of k, m are only
(11010002, 11010102) and (11010102, 11010002), i.e. (104, 106) and (106, 104).

55. Let f : R→ R be a function such that for all x, y ∈ R,

f(x3 + y3) = (x + y)((f(x))2 − f(x)f(y) + (f(y))2).

Prove that for all x ∈ R, f(2001x) = 2001f(x).

Soln. Let x = y = 0 and we have f(0) = 0. Setting y = 0, we have f(x3) = x(f(x))2,
or equivalently, f(x) = x1/3f(x1/3)2. In particular, x and f(x) have the same sign.Let S
be the set S = {a > 0 : f(ax) = af(x)∀x ∈ <}.Clearly 1 ∈ S, and we will show a1/3 ∈ S
whenever a ∈ S. In fact, axf(x)2 = af(x3) = f(ax3) = f((a1/3x)3) = a1/3xf(a1/3x)2.
Hence (a1/3f(x))2 = f(a1/3x)2. Since x and f(x) have the same sign, we conclude that
f(a1/3x) = a1/3f(x).Now we show that if a, b ∈ S, then a + b ∈ S. Indeed, we have

f((a + b)x) = f((a1/3x1/3)3 + (b1/3x1/3)3)

= (a1/3 + b1/3)x1/3(f(a1/3x1/3)2 − f(a1/3x1/3)f(b1/3x1/3) + f(b1/3x1/3)2)

= (a1/3 + b1/3)(a2/3 − a1/3b1/3 + b2/3)x1/3f(x1/3)2

= (a + b)f(x).
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Hence in particular, we have f(2001x) = 2001f(x).

56. Find all functions f : N→ N with the property that for all n ∈ N,

1
f(1)f(2)

+
1

f(2)f(3)
+ · · ·+ 1

f(n)f(n + 1)
=

f(f(n))
f(n + 1)

.

Soln. Let n = 1 and we have f(f(1))f(1) = 1; hence f(1) = 1. Replacing the equality for
n into one for n + 1 we obtain

f(f(n))
f(n + 1)

+
1

f(n + 1)f(n + 2)
=

f(f(n + 1))
f(n + 2)

.

This is equivalent to

f(f(n))f(n + 2) + 1 = f(f(n + 1))f(n + 1).

Note that f(n + 1) = 1 implies f(f(n + 1)) = 1, hence f(f(n))f(n + 2) = 0, which is
impossible. Hence f(n) > 1 for n > 1.We use induction to show that f(f(n)) < f(n + 1).
The inequality is true for n = 1, since f(2) > 1 = f(f(1)). Also, if f(n + 1) > f(f(n)),
then f(n + 1) ≥ f(f(n)) + 1. Hence

f(f(n))f(n + 2) + 1 ≥ f(f(n + 1))f(f(n)) + f(f(n + 1)).

Since n+1 > 1, f(n+1) > 1 and thus f(f(n+1)) > 1, which implies that f(n+2) > f(f(n+
1)).The problem is now reduced to finding all functions f such that f(f(n)) < f(n + 1).
f has a unique minimum at n = 1, for if n > 1, we have f(n) > f(f(n− 1)). By the same
reasoning, we see that the second smallest value is f(2), etc. Hence

f(1) < f(2) < f(3) < · · · .

Now since f(1) ≥ 1, we have f(n) ≥ n. Now suppose for some natural number n, we have
f(n) > n. Then f(n) ≥ n + 1. Since f is increasing, f(f(n)) ≥ f(n + 1), a contradiction.
Hence f(n) = n for all n ∈ N.

57. Define f : N→ N and g : N→ Z such that

(a) f(x, x) = x,

(b) f(x, y) = f(y, x),

(c) f(x, y) = f(x, x + y),

(d) g(2001) = 2002,
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(e) g(xy) = g(x) + g(y) + mg(f(x, y)).

Determine all integers m for which g exists.

Soln. We claim that f(x, y) = gcd(x, y). This is a simple exercise in induction. (induct
on the sum x + y).Now let a = b and we have g(a2) = (m + 2)g(a). Applying this again
we get g(a4) = (m + 2)g(a2) = (m + 2)2g(a).On the other hand,

g(a4) = g(a) + g(a3) + mg(a)

= (m + 1)g(a) + g(a3)

= (m + 1)g(a) + g(a) + g(a2) + mg(a)

= (2m + 2)g(a) + g(a2) = (3m + 4)g(a).

Now let a = 2001, and we have (m + 2)2 = 3m + 4 and hence m = 0,−1. For m = 0, an
example is given by

g(pα1
1 · · · pαn

n ) = α1h(p1) + · · ·+ αnh(pn),

where k is a prime factor of 2001, h(3) = 2002 and h(p) = 0 for all primes p 6= 3. For
m = −1, an example is given by

g(pα1
1 · · · pαn

n ) = h(p1) + · · ·+ h(pn).

It is easy to check that these functions do indeed satisfy the given requirements.

Solutions for 8-12-2001

63. Suppose {ai}m
i=n is a finite sequence of integers, and there is a prime p and some

k, n ≤ k ≤ m such that p|ak but p 6 |aj , n ≤ j ≤ m, j 6= k. Prove that
∑m

i=n
1
ai

cannot be
an integer.

Soln. Suppose
∑m

i=n
1
ai

= L is an integer. Then after finding common denominator and
multiplying both sides by an · · · am, we have

Lanan+1 · · · am = an+1an+2 · · · am + · · ·+ an · · · âk · · · am + · · ·+ an+1an+2 · · · am−1.

But p divides the left hand side and all except the kth term of the right hand side. This
contradiction shows that

∑m
i=n

1
ai

cannot be an integer.

64. Prove that for any choice of m and n, m,n > 1,
∑m

i=n
1
i cannot be a positive integer.

Soln. Clearly, it is meaningful to consider the cases where m > n. If m ≤ 2n, then∑m
i=n

1
i <

∑m
i=n

1
n = 1. If m > 2n, then there is a prime between m and

⌊
m
2

⌋
, which we

call p. From question 1, we can conclude that
∑m

i=n
1
i can never be an integer.

33



65. There is a tournament where 10 teams take part, and each pair of teams plays against
each other once and only once. Define a cycle {A,B,C} to be such that team A beats
team B, B beats C and C beats A. Two cycles {A,B, C} and {C, A,B} are considered the
same. Find the largest possible number of cycles after all the teams have played against
each other.

Soln. We label the teams T1, T2, ..., T10. Let the number of times Ti wins be wi and the
number of losses be li. Instead of looking at the cycles as it is, we first look at the total
number of 3-combinations of teams and the number of 3-combinations which cannot be
rearranged to form a cycle. The total number of 3-combinations is 10C3 = 120. Next,
we look at the 3-combinations that can be made to form cycles and those which cannot
(from here on, we call these non-cycles). The non-cycles consists of a single team beating
the other two teams and a single team losing to the other 2 teams, and if a 3-combination
consists of a single team beating the other two teams or a single team losing to the other
2 teams, it is a non-cycle. We can then count the non-cycles in a different manner. By
focusing on this property of non-cycles, we can deduce that the number of non-cycles
is

∑10
i=1

(
wi

2

)
+

(
li
2

)
. Clearly, we have wi + li = 9, and rearranging the formula gives∑10

i=1

(
wi

2

)
+

(
li
2

)
=

∑10
i=1

(
w2

i − 9wi + 36
)
. And the number of non-cycles and the number

of cycles sum up to 120. We aim to minimise the number of non-cycles. This can be
achieved if wi = 4 or 5, and is certainly attainable. (The answer to this question is 40.)
The description of such a case is:

(i) If Ta and Tb are such a and b have the same parity, and a > b, then Ta beats Tb.

(ii) If Ta and Tb are such a and b have different parity, and a > b, then Ta loses to Tb.

66. Consider the recursions xn+1 = 2xn + 3yn, yn+1 = xn + 2yn with x1 = 2, y1 = 1.
Show that for each integer n ≥ 1, there is a positive integer Kn such that

x2n+1 = 2
(
K2

n + (Kn + 1)2
)

.

Soln. Now, after some rearrangement, we have

x2n+1 = 2
(
K2

n + (Kn + 1)2
)

= (2Kn + 1)2 + 1.

Therefore, it suffices to show that x2n+1 − 1 is an odd perfect square. Expressing xn+2

and yn+2 in terms of xn and yn, we have xn+2 = 7xn + 12yn and yn+2 = 4xn + 7xn.
As we try to express xn−2 in terms of xn and yn, we have xn−2 = 7xn − 12yn. Hence
xn+2 = 14xn − xn−2.

We define a1 = 1 and a3 = 5 and an+4 = 4an+2−an. We can prove by induction that
xn−a2

n = 1 for all odd integers n. Then we can proceed to prove by induction that an are
all odd for all odd n. Therefore, xn − 1 = a2

n and we are done.
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To elaborate certain details. With xn+2 = 14xn − xn−2, x1 = 2 and x3 = 26, we can
solve for xn to get:

x2n+1 =
1
2

(
2 +

√
3
)(

7 + 4
√

3
)n

+
1
2

(
2−

√
3
)(

7− 4
√

3
)n

=
1
2

(
2 +

√
3
)(

2 +
√

3
)2n

+
1
2

(
2−

√
3
)(

2−
√

3
)2n

=
1
4

(
4 + 2

√
3
)(

2 +
√

3
)2n

+
1
4

(
4− 2

√
3
)(

2−
√

3
)2n

− 1 + 1

=
(

1
2

(
1 +

√
3
))2 (

2 +
√

3
)2n

+
(

1
2

(
1−

√
3
))2 (

2−
√

3
)2n

− 1 + 1

=
(

1
2

(
1 +

√
3
)(

2 +
√

3
)n

)2

+
(

1
2

(
1−

√
3
)(

2−
√

3
)n

)2

− 1 + 1

=
(

1
2

(
1 +

√
3
)(

2 +
√

3
)n

+
1
2

(
1−

√
3
) (

2−
√

3
)n

)2

+ 1

67. Suppose that ABCD is a tetrahedron and its four altitudes AA1, BB1, CC1, DD1

intersect at the point H. Let A2, B2, C2 be points on AA1, BB1, CC1 respectively such that
AA2 : A2A1 = BB2 : B2B1 = CC2 : C2C1 = 2 : 1. Show that the points H, A2, B2, C2, D1

are on a sphere.

Soln. Let G be the centroid of the triangle ABC. Prove that ∠HA2G = ∠HB2G =
∠HC2G = ∠HD1G = 90o. Thus, The centre of the sphere that we are looking for is at
the midpoint of H and G.
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