Training problems 10 April 2003

14. Let A be a set with 8 elements. Find the maximum number of distinct 3-element
subsets of A such that the intersection of any two of them is not a 2-element set.

Solution. Let GG be a graph with vertex set A. Two vertices are adjacent if and only if they
belong to the same 3-element subset. Thus 3 vertices that belong to the same 3-element
subset will form a 3-cycle (C3). The question asks for the maximum number of Css that
GG can contain subject to the condition that every 2 of these Css do not have a common
edge. (The graph may, however, contain other C3. But these will share an edge with the
Css we want.) We may further assume that every edge belongs to some Cj.

Since at most 3 C3 can share a common vertex, every vertex if od degree at most 6.
Thus G has at most (6 x 8)/2 = 24 edges and so at most 8 Css.

An example with 8 sets is:

123,145,167, 246, 278, 348, 357, 568.

2nd solution. This is not easier than the first but it introduces a very useful idea of
an incidence matrizc.

Let By,...,B, be 3-element subsets of A such that |B; N B;| # 2. Form an inci-
dence matrix with rows indexed by B, ..., B, and with columns indexed by the elements
ai,...,ag of A. An entry (B;,a;) is 1if a; € B; and is 0 otherwise. Then there are 3 ones
in every row. Call a pair of ones in the same column a 1-pair. The given condition states
that there is at most 1 1-pair in every pair of rows. Suppose there is a column, say column
1, that has 4 ones, say in the first 4 rows. Then in the submatrix formed by the first 4
rows and the last 7 columns, there are 8 ones. Thus there is at least one 1-pair. Hence
some pair of rows has two 1-pairs, a contradiction.

Thus every column has at most 3 ones. Counting the total number of ones in the
incidence matrix in 2 different ways, we conclude that n < 8.

It’s not hard to get an example with 8 sets. Thus the answer is 8.

15. Find all primes p for which p(2P~! — 1) is the kth power of a positive integer for some
k> 1.

Solution. Let p(2P~! — 1) = z* for some positive integers x, k. It’s clear that p # 2.
Thus p = 2¢ + 1. Write = py. Then (2¢ + 1)(2¢ — 1) = p*~1y*. Since at least one of
29 41 and 29 — 1 is the kth power of an integer since they are coprime.

Case (1): 29 —1 = 2z*. Then 27 = z* 4 1. If k is even, then z* + 1 is not divisible by
4. Hence ¢ = 1,p =3 and p(2P~1 — 1) = 32,

If k=20+1,i.e., odd, then
2 =(z4+D* 2214 —241) ie 241=2°0<a<gq.
On the other hand,
27 = (2% — 1)%¢F1 11 = A2%* 1 2%(20 + 1), A is an integer
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The last equality contradicts with a < q.
Case (2): 27+ 1 = 2*. Then 27 = z* — 1. If k is odd we get a contradiction as before.

If k = 2/, then (2°—1)(2°+1) = 27 and since ged(z° —1, 2 +1) = 2, we have 2/ —1 = 2,
ie,q=3,p="7,p2P 1 -1)=21%

Thus the answers are p = 3, 7.

16. Let k be a given real number. Find all functions f : (0,00) — (0,00) such that the
following equality holds for all positive real number x:

x
kx?f(1/z) + f(z) = 1
Solution. Divide by = we get
kef(1/a) + () = ——
x r+1
Replace x by 1/x we get .
x
S )+ af (1) = T

Solve the system of equations with unknowns f(x) and f(1/x), we get

(1—k)f(x) 1—kx
x oz +1

If k # +£1, then there is a unique solution

r 1—kx

@)= 15

It’s easy to see that this expression satisfies the given functional equation.

If k = 41, there is no solution. For f(z) > 0 for all positive =, we also need —1 < k <
0. Thus such a function exists only when —1 < k < 0. In this case the unique solution is

fl@) = s
17. Let n be an integer, n > 3. Let aq,...,a, be real numbers, where 2 < a; < 3 for
i1=1,...,n. if s=ay +--- 4+ a,. prove that

2 2 2 2 2 2 2 2 2
ajy +a a as; +a a a; +a a
1 2 3 2 3 4 n 1 2<28 M.
a1+a2—a3 a2+a3—a4 an+a1—a2

Solution. Write

2 2 2
a; + a: — Qa; 2a;a;

% i+1 i+2 1 Wi+1
= a; + ai41 + aij4+2 —

A = )
i + Qi1 — Q542 i + Q41 — Giq2




Since (CLZ' — 2)(ai+1 - 2) Z 0, —2a,~a,~+1 S —4(CLZ' + A;4+1 — 2) and

Qi — 2
Aiéai+ai+1+ai+2—4<1+ 2 )
a; + Q41 — Q42

Since1:2+2—3§a¢+ai+1—a¢+2§3+3—2:4,

Ai4+2 — 2

Aiéai+ai+1+ai+2—4(1+ 1

>:ai+ai+1_2~

Hence Y  A; < 2s — 2n.

18. Two chords UV and RS of a circle C centred at O intersect at the point N. Suppose
AB is a line segment outside the circle C such that AU, AV, BR and BS are tangent to
the circle C at U, V, R and S respectively. Prove that ON is perpendicular to AB.

Solution.

Join ON and extend it to meet AB at M. Let OA intersect UV at P and OB
intersect RS at ). Join PQ). Then ZOPN = ZOQN = 90°. Hence, O, P, N and @ are
concyclic. As OP -0OA = 0OU? = 05? = OQ - OB, we have A, B,Q and P are concyclic.
Therefore, Z/OAM = Z0QP = ZONP. This shows that P, A, M and N are concyclic.
Hence, ZAMO = ZOPN = 90°.

(2nd solution by Colin Tan) Extend BN to W such that ZNWS = ZBSN (= ZBRN).
This is possible as ZBNS > ZBRN. Thus BS is tangent to circumcircle of SNW and
SW RB cyclic. This gives the relations BN - BW = BS? = OB? — OR? and BN - NW =
SN -NR so BN? = BN - BW — BN - NW = OB? — OR? — SN - NR. Get a similar
expression for AN?, and this would give BN? — AN? = OB? — OA? which implies that
ON is perpendicular to AB. (Compare the proof of this with question 12. Also the same
proof using projective geometry as in question 12 can be applied here.)

19. Let ABCD be a cyclic quadrilateral. Prove that
|AC — BD| < |AB — CD,|.
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When does equality hold?

Solution. Let E and F be the midpoints of the diagonals AC and BD. In every
quadrilateral the following relation due to Euler holds:

AC? + BD* + 4EF? = AB? + BC? + CD? + DA”.
Since ABCD is a cyclic quadrilateral, we have Ptolemeus identity
AB-CD+ AD - BC = AC - BD.

Hence,
(AC — BD)? + 4EF* = (AB — CD)? + (AD — BC).

Let us prove that 4EF? > (AD — BC)?. This will implies the stated inequality. Let M
be the midpoint of AB. In the triangle M EF, we have AD = 2MF, BC = 2MFE, and
from triangle’s inequality, EF > |[ME — MF|, hence 2EF > |BC — AD| and 4EF? >
(AD — BC)?.

The equality holds if and only if the points M, E, F' are collinear, which happens if
and only if AB is parallel to C'D, that is ABCD is either an isosceles trapezium or a
rectangle.

20. Let I' be a convex polygon with 2000 sides and P an interior point which does not lie
on any diagonal of I'. Prove that P is in the interior of an even number of triangles formed
using the vertices of T'.

Solution. First observe that if P lies in a quadrilateral, then it is contained in the interiors
of two triangles. Next, if a triangle /A contains P, then any quadrilateral containing A
also contains P. As each triangle in I' is contained in 1997 quadrilaterals, the point P € A
is contained in 1997 quadrilaterals. Let m be the number of quadrilaterals containing P
and n the number of triangles containing P. Then 2m = 1997n. Hence, n must be even.
Here, we are counting the number of pairs (A, @), where P lies in the triangle A which is
inside the quadrilateral Q.



