Singapore International Mathematical Olympiad Training Problems

1. Let p be a prime number congruent to 1 modulo 4 . Define the set

$$
S=\left\{(a, b, c) \in \mathbf{N}^{2} \times(\mathbf{Z}-\{0\}), 4 a b+c^{2}=p\right\}
$$

Now consider

$$
S_{1}=\{(a, b, c) \in S, a>b+c\} .
$$

Assume that $\left|S_{1}\right|$ is odd. Show that p can be expressed as a sum of two squares.
2. Prove that the circle with equation $x^{2}+y^{2}=1$ contains an infinite number of points with rational coordinates such that the distance between each pair of the points is irrational.
3. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function such that
(a) $f(2 x)=2[f(x)]^{2}-1$, for all $x \in \mathbf{R}$;
(b) There exists a real number x_{0} such that $f\left(2^{n} x_{0}\right) \leq 0$ for all natural numbers n.

Determine the value of $f\left(x_{0}\right)$.

1. S is non empty since $(k, 1,1) \in S$ and $|S|$ is also finite since if $(a, b, c) \in S, a, b,|c|$ are all bounded by p. Now consider

$$
S_{1}=\{(a, b, c) \in S, a>b+c\} \quad S_{2}=\{(a, b, c) \in S, a<b+c\}
$$

Then S_{1} and S_{2} are clearly disjoint, and if $a=b+c$, we have $p=4 b(b+c)+c^{2}=(c+2 b)^{2}$, which is a contradiction. Hence S is the disjoint union of S_{1} and S_{2}. Consider now $(a, b, c) \rightarrow(b, a,-c)$. This is a bijection from S_{1} to S_{2}. Hence $\left|S_{1}\right|=\left|S_{2}\right|$.
Since $\left|S_{1}\right|$ is odd, we have $|S| \equiv 2(\bmod 4)$. Now consider

$$
S_{3}=\{(a, b, c) \in S, a \neq b\}
$$

Then for all $(a, b, c) \in S$, with $a \neq b$, we can associate 4 distinct triplets

$$
(a, b, c),(a, b,-c),(b, a, c),(b, a,-c)
$$

in S. Hence $\left|S_{3}\right|$ is divisible by 4. This shows that $S_{3} \subset S$ (strict inclusion). Hence there exists a triplet $(a, a, c) \in S$. Thus $p=4 a^{2}+c^{2}=(2 a)^{2}+c^{2}$, as required. Note that the assumption that $\left|S_{1}\right|$ is odd can be proven. (As Andre pointed out, consider the map f which maps $(a, b, c) \rightarrow(a-b-c, b,-2 b-c)$ from S_{1} to itself. $f^{2}=\mathrm{Id}$, and we can check that a 'fixed point' is $\left(\frac{p-1}{4}, 1,-1\right)$. A pairing up will give you the result.)
2. Let p be a prime and $p \equiv 1(\bmod 4)$. Then there exists integers a and b such that $p=a^{2}+b^{2}$, and by Dirichlet's Theorem, there exists infinitely primes of the form $4 k+1$, thus consider the set of points given by

$$
\mathbf{x}_{\mathbf{p}}=\left(\frac{a^{2}-b^{2}}{p}, \frac{2 a b}{p}\right)
$$

All these points lie on the unit circle, and are irreducible fractions. If $p \neq q$, we have

$$
\left\|\mathbf{x}_{\mathbf{p}} \mathbf{x}_{\mathbf{q}}\right\|=\frac{2|a d-b c|}{\sqrt{p q}}
$$

and since $p \neq q$ are primes, the above fraction is irrational and we are done.
3. Note that if $f\left(x_{0}\right)$ is a solution, $-f\left(x_{0}\right)$ is also a solution. It is clear that $f\left(x_{0}\right) \neq 0$. So assume WLOG $f\left(x_{0}\right)=p<0$. Then we have $f\left(2^{n-1} x_{0}\right)=2\left[f\left(2^{n-2} x_{0}\right)\right]^{2}-1 \geq-1$, and thus $-1 \leq f\left(2^{n-1} x_{0}\right)<0$ for all natural numbers n. Now we obtain a better upper bound. We claim that we have $-1 \leq f\left(2^{n-1} x_{0}\right) \leq-\frac{1}{4}$. Suppose that there exists a natural number m such that $0>f\left(2^{m-1} x_{0}\right)>-\frac{1}{4}$. Then we have $-1 \leq f\left(2^{m} x_{0}\right)<-\frac{7}{8}$, and hence $1>f\left(2^{m+1} x_{0}\right)>\frac{17}{32}>0$, a contradiction. Now from the given functional, we have

$$
f(2 x)+\frac{1}{2}=2\left(f(x)-\frac{1}{2}\right)\left(f(x)+\frac{1}{2}\right)
$$

and hence for all natural numbers n, we have

$$
\left|f\left(2^{n} x_{0}\right)+\frac{1}{2}\right|=2\left|f\left(2^{n-1} x_{0}\right)-\frac{1}{2}\right|\left|f\left(2^{n-1} x_{0}\right)+\frac{1}{2}\right| \geq 2\left(\frac{1}{2}+\frac{1}{4}\right)\left|f\left(2^{n-1} x_{0}\right)+\frac{1}{2}\right|
$$

or equivalently

$$
\left|f\left(2^{n-1} x_{0}\right)+\frac{1}{2}\right| \leq \frac{2}{3}\left|f\left(2^{n} x_{0}\right)+\frac{1}{2}\right|
$$

Hence we have
$\left|f\left(x_{0}\right)+\frac{1}{2}\right| \leq \frac{2}{3}\left|f\left(2 x_{0}\right)+\frac{1}{2}\right| \leq \ldots \leq\left(\frac{2}{3}\right)^{n+1}\left|f\left(2^{n+1} x_{0}\right)+\frac{1}{2}\right| \leq\left(\frac{2}{3}\right)^{n+1}\left(1+\frac{1}{2}\right) \leq\left(\frac{2}{3}\right)^{n}$,
and letting $n \rightarrow \infty$, we have

$$
\left|f\left(x_{0}\right)+\frac{1}{2}\right| \rightarrow 0
$$

and thus $f\left(x_{0}\right)=-\frac{1}{2}$. Hence we have $f\left(x_{0}\right)= \pm \frac{1}{2}$.

