Singapore International Mathematical Olympiad Training Problems

08 March 2003

1. Let p be a prime number congruent to 1 modulo 4. Define the set

$$S = \{(a, b, c) \in \mathbf{N}^2 \times (\mathbf{Z} - \{0\}), 4ab + c^2 = p\}.$$

Now consider

$$S_1 = \{(a, b, c) \in S, a > b + c\}.$$

Assume that $|S_1|$ is odd. Show that p can be expressed as a sum of two squares.

- 2. Prove that the circle with equation $x^2 + y^2 = 1$ contains an infinite number of points with rational coordinates such that the distance between each pair of the points is irrational.
- **3.** Let $f : \mathbf{R} \to \mathbf{R}$ be a function such that
 - (a) $f(2x) = 2 [f(x)]^2 1$, for all $x \in \mathbf{R}$;
 - (b) There exists a real number x_0 such that $f(2^n x_0) \leq 0$ for all natural numbers n.

Determine the value of $f(x_0)$.

Solutions

1. S is non empty since $(k, 1, 1) \in S$ and |S| is also finite since if $(a, b, c) \in S$, a, b, |c| are all bounded by p. Now consider

$$S_1 = \{(a, b, c) \in S, a > b + c\} \qquad S_2 = \{(a, b, c) \in S, a < b + c\}.$$

Then S_1 and S_2 are clearly disjoint, and if a = b + c, we have $p = 4b(b+c) + c^2 = (c+2b)^2$, which is a contradiction. Hence S is the disjoint union of S_1 and S_2 . Consider now $(a, b, c) \rightarrow (b, a, -c)$. This is a bijection from S_1 to S_2 . Hence $|S_1| = |S_2|$. Since $|S_1|$ is odd, we have $|S| \equiv 2 \pmod{4}$. Now consider

$$S_3 = \{(a, b, c) \in S, a \neq b\}.$$

Then for all $(a, b, c) \in S$, with $a \neq b$, we can associate 4 distinct triplets

$$(a, b, c), (a, b, -c), (b, a, c), (b, a, -c)$$

in S. Hence $|S_3|$ is divisible by 4. This shows that $S_3 \subset S$ (strict inclusion). Hence there exists a triplet $(a, a, c) \in S$. Thus $p = 4a^2 + c^2 = (2a)^2 + c^2$, as required. Note that the assumption that $|S_1|$ is odd can be proven. (As Andre pointed out, consider the map f which maps $(a, b, c) \to (a - b - c, b, -2b - c)$ from S_1 to itself. $f^2 = \text{Id}$, and we can check that a 'fixed point' is $(\frac{p-1}{4}, 1, -1)$. A pairing up will give you the result.)

2. Let p be a prime and $p \equiv 1 \pmod{4}$. Then there exists integers a and b such that $p = a^2 + b^2$, and by Dirichlet's Theorem, there exists infinitely primes of the form 4k + 1, thus consider the set of points given by

$$\mathbf{x}_{\mathbf{p}} = \left(\frac{a^2 - b^2}{p}, \frac{2ab}{p}\right)$$

All these points lie on the unit circle, and are irreducible fractions. If $p \neq q$, we have

$$||\mathbf{x}_{\mathbf{p}}\mathbf{x}_{\mathbf{q}}|| = \frac{2|ad - bc|}{\sqrt{pq}}$$

and since $p \neq q$ are primes, the above fraction is irrational and we are done.

3. Note that if $f(x_0)$ is a solution, $-f(x_0)$ is also a solution. It is clear that $f(x_0) \neq 0$. So assume WLOG $f(x_0) = p < 0$. Then we have $f(2^{n-1}x_0) = 2 [f(2^{n-2}x_0)]^2 - 1 \ge -1$, and thus $-1 \le f(2^{n-1}x_0) < 0$ for all natural numbers n. Now we obtain a better upper bound. We claim that we have $-1 \le f(2^{n-1}x_0) \le -\frac{1}{4}$. Suppose that there exists a natural number m such that $0 > f(2^{m-1}x_0) > -\frac{1}{4}$. Then we have $-1 \le f(2^m x_0) < -\frac{7}{8}$, and hence $1 > f(2^{m+1}x_0) > \frac{17}{32} > 0$, a contradiction. Now from the given functional, we have

$$f(2x) + \frac{1}{2} = 2\left(f(x) - \frac{1}{2}\right)\left(f(x) + \frac{1}{2}\right)$$

and hence for all natural numbers n, we have

$$\left| f(2^{n}x_{0}) + \frac{1}{2} \right| = 2 \left| f(2^{n-1}x_{0}) - \frac{1}{2} \right| \left| f(2^{n-1}x_{0}) + \frac{1}{2} \right| \ge 2 \left(\frac{1}{2} + \frac{1}{4}\right) \left| f(2^{n-1}x_{0}) + \frac{1}{2} \right|$$

or equivalently

$$\left| f(2^{n-1}x_0) + \frac{1}{2} \right| \le \frac{2}{3} \left| f(2^n x_0) + \frac{1}{2} \right|.$$

Hence we have

$$\left| f(x_0) + \frac{1}{2} \right| \le \frac{2}{3} \left| f(2x_0) + \frac{1}{2} \right| \le \dots \le \left(\frac{2}{3}\right)^{n+1} \left| f(2^{n+1}x_0) + \frac{1}{2} \right| \le \left(\frac{2}{3}\right)^{n+1} \left(1 + \frac{1}{2}\right) \le \left(\frac{2}{3}\right)^n,$$

and letting $n \to \infty$, we have

$$\left|f(x_0) + \frac{1}{2}\right| \to 0,$$

and thus $f(x_0) = -\frac{1}{2}$. Hence we have $f(x_0) = \pm \frac{1}{2}$.