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. Let n be an odd integer which is not a multiple of 5. Prove that there exists a strictly
positive integer k£ such that n divides a string of k 1’s, i.e.

n|11...11.
kl’s

. Determine all natural numbers (k, m,n) such that

n! = m".

. Show that for all integers A, B, there exists an integer C' such that the following sets
My = {2+ Axr+ B :x € Z} and My = {22% + 22 + C : x € Z} are disjoint.

. Let m be a strictly positive integer. Show that there exists infinitely many pairs of integers
(z,y) such that
(a) x,y are relatively prime
(b) y divides 2% +m
(c) z divides y% +m
)

(d) z+y>m+1

. Let m and k be positive integers such that ged(m, k) = a.

(a) Suppose that a = 1. Show that there exists integers ay, ag, ..., am, and by, ba, ..., by, such
that each of the products a;b; (i =1,2,...,m,j =1,2,..., k) gives a different remainder
modulo mk.

(b) Suppose that a > 1. Show that for all integers ai, ag, ..., an, and by, by, ..., by there exists
two products a;b; and asb; ((4,7) # (s,t)) such that they have the same remainder
modulo mk.

. Let n be a non negative integer. Suppose that there exists rational numbers p, ¢, such
that
n = p2 + q2 + 72

Prove that there exists integers a, b, ¢ such that

n=a®+b>+



D.

Solutions

. From the given conditions ged(n,10) = 1. But ged(9,10) = 1 and hence ged(9n,10) = 1.

Thus by Euler’s Theorem,
10207 =1 (mod 9n),

which implies the desired result.

. Using Bertrand’s Postulate, there exists a prime p satisfying § < p <n for all n > 3. Now

note that 2p > n, hence p only has a single power in n!, i.e. k¥ = 1. Hence (m,n,k) =
(n!,n,1) is a solution triplet. If n = 2, we have 2 = m*, hence we must have m = 2,k = 1.
If n = 1, we must have 1 = m* or m = 1,k € X thus (m,n, k) = (1,1, k) is another solution
triplet. Thus the only solutions to the equation are

(m,n, k)= (1,1,k), (n!,n, 1), n,k € N,

.If Aisodd, 2> + Ax+ B=z(x+ A) + B = B (mod 2), but 222 + 22 + C = C (mod 2).

So we may choose C' = B + 1.

2 2 2
If Aiseven, 22+ Av+ B = (x+%)2+B—AT EB—ATOTB—AT—{—l (mod 4), but
222 + 22+ 1 = C (mod 4), so we may choose C' = B — AT?—FZ in this case.

. Note that (1, 1) satisfies the given conditions. Now if (z,y) is a solution with y > x, consider

(x1,y) where
y2 +m = zx1

All common divisors of 21 and y must by the above a divisor of m, and since y|z? +zz; —y2,
we must have y|z(z + x1), and since ged(x,y) = 1, we must have y|(z + x1), and hence the
common divisor of y and x; must divide x too, but ged(x,y) = 1, we have ged(z1,y) = 1.
It is clear that x1|y? + m, and

22} +m) = (y* + m)? + 2®m =y + 2my® + m(a® + m),

but y|(z% + m) implies that y|z?(x? + m), but ged(z,y) = 1 implies that y|(z? + m). Now
x1 >y < x. Repeat the same argument to generate y;, but instead consider

3 +m = yyi.

Then (z1,y;) is also a solution, with z1 + y; > = + y. Continue this process to generate
(x2,Y2),... and since m is fixed, x,, + y, > m + 1 for some n, thus (zn, yn), (Tnt1, Ynt1)s -
is a set of infinitely many solution pairs which satisfies all given conditions.

(a) Consider a; = ki + 1, b; = mj + 1. Suppose that two of the residues are the same.
Then mk divides a;b; — asby = (ki + 1)(mj + 1) — (ks + 1)(mt + 1) = km(ij — st) +
m(j —t) + k(i — s), and thus m|k(i — s) but ged(m, k) = 1, hence m|(i — s), and since
|i — s| < m, we must have i = s and similarly j = ¢ and we are done.

(b) Suppose all the residues are distinct. Then 0 is one the residues. WLOG, suppose
mkla1by. Hence there exists a/,b’ such that a'|a;, b'|b; and mk = o’'b/. Suppose now
that for i # s, a’|(a; — as). Then we have mk = a'V/|(a;b1 — asby), which is a contra-
diction. Hence all the a;’s cannot have the same residue modulo o/, similarly, all the
b;’s cannot have the same residue modulo b'. Thus we must have @’ > m, b > k thus
a =m,b =k.

Now let p be a prime divisor of m and k. p > 1 since ged(m, k) > 1. Since all the a;’s
form a distinct set of residues modulo m, there are m — % between them which are

not divisible by p. Similarly, there are k — % bj’s which are not divisible by p. On the
other hand all the a;b;’s form a set of reduced residues modulo mk by our assumption,
and hence between them, there are mk — m?k which are not divisible by p. But

(=) )= ()

if and only if m = 0,k =0 or p = 1, which is a contradiction.



6. If n = 0, the result is clear. So suppose n > 0. Suppose the set of points (x1,x2, x3) which
lies on the sphere
n=a+y* +2*

are all rational points. We will obtain a contradiction. Now there exists an integer point
u = (uq, ug, ..., up) such that ad = u, where d > 2. Suppose that a and u are chosen such
that d is minimal. Then let 2/,y'2" be the integers closest to x,y, z, where a = (z,y, 2).
Then |z —2/| < 3, |y —¢/| < 3 and |2 — 2/| < 3, hence |la — d/|| < 1, where a’ = (2, ¢/, 2).
Now consider the line connecting a and a’. This will intersect the sphere 2 + 32 + 22 =n
at two points, one at a and the other which we call b. The equation of the line is given by

a’ + Xa — a’). Now b lies on the sphere so
n=|b||*=||d|]* + 2\ < d,a—d > +N||a—d||*

One of the solutions to this equation is given by A = 1, which correspond to the point a.
_ lla[P=n

= -7 Now

The other thus is given by A

2 d
lla —d'||* = ||d||*> + ||a]|* =2 < d,a >= ||d||* +n — yi <d,u>= El’

d(lla’[|2=n)
di

where d; € R and since ||a — d||? < 1 we have d; < d. Hence \ = and we have

b = d+Xa—d)

2 _
— a’—i—HaHdl % (u - da')
v
a4

where v is an integer point. Now b = vd; with d; < d contradicts our assumption that d is
minimal.

Note that a generalisation is not possible using this method since ||a — a/[|*> < 1 will NOT
be satisfied for higher dimension spaces. For a one dimensional space, i.e. the real line,
this result is obvious. For a two dimensional space, i.e. the plane, this argument works.



