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1. Let n be an odd integer which is not a multiple of 5. Prove that there exists a strictly
positive integer k such that n divides a string of k 1’s, i.e.

n| 11...11︸ ︷︷ ︸
k1’s

.

2. Determine all natural numbers (k, m, n) such that

n! = mk.

3. Show that for all integers A,B, there exists an integer C such that the following sets
M1 = {x2 + Ax + B : x ∈ Z} and M2 = {2x2 + 2x + C : x ∈ Z} are disjoint.

4. Let m be a strictly positive integer. Show that there exists infinitely many pairs of integers
(x, y) such that

(a) x, y are relatively prime

(b) y divides x2 + m

(c) x divides y2 + m

(d) x + y ≥ m + 1

5. Let m and k be positive integers such that gcd(m, k) = a.

(a) Suppose that a = 1. Show that there exists integers a1, a2, ..., am and b1, b2, ..., bk such
that each of the products aibj (i = 1, 2, ...,m, j = 1, 2, ..., k) gives a different remainder
modulo mk.

(b) Suppose that a > 1. Show that for all integers a1, a2, ..., am and b1, b2, ..., bk there exists
two products aibj and asbt ((i, j) 6= (s, t)) such that they have the same remainder
modulo mk.

6. Let n be a non negative integer. Suppose that there exists rational numbers p, q, r such
that

n = p2 + q2 + r2.

Prove that there exists integers a, b, c such that

n = a2 + b2 + c2.
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Solutions

1. From the given conditions gcd(n, 10) = 1. But gcd(9, 10) = 1 and hence gcd(9n, 10) = 1.
Thus by Euler’s Theorem,

10φ(9n) ≡ 1 (mod 9n),

which implies the desired result.

2. Using Bertrand’s Postulate, there exists a prime p satisfying n
2 < p < n for all n ≥ 3. Now

note that 2p > n, hence p only has a single power in n!, i.e. k = 1. Hence (m,n, k) =
(n!, n, 1) is a solution triplet. If n = 2, we have 2 = mk, hence we must have m = 2, k = 1.
If n = 1, we must have 1 = mk, or m = 1, k ∈ ℵ thus (m,n, k) = (1, 1, k) is another solution
triplet. Thus the only solutions to the equation are

(m, n, k) = (1, 1, k), (n!, n, 1), n, k ∈ ℵ.

3. If A is odd, x2 + Ax + B ≡ x(x + A) + B ≡ B (mod 2), but 2x2 + 2x + C ≡ C (mod 2).
So we may choose C = B + 1.
If A is even, x2 + Ax + B = (x + A

2 )2 + B − A2

4 ≡ B − A2

4 or B − A2

4 + 1 (mod 4), but
2x2 + 2x + 1 ≡ C (mod 4), so we may choose C = B − A2

4 + 2 in this case.

4. Note that (1, 1) satisfies the given conditions. Now if (x, y) is a solution with y ≥ x, consider
(x1, y) where

y2 + m = xx1

All common divisors of x1 and y must by the above a divisor of m, and since y|x2+xx1−y2,
we must have y|x(x + x1), and since gcd(x, y) = 1, we must have y|(x + x1), and hence the
common divisor of y and x1 must divide x too, but gcd(x, y) = 1, we have gcd(x1, y) = 1.
It is clear that x1|y2 + m, and

x2(x2
1 + m) = (y2 + m)2 + x2m = y4 + 2my2 + m(x2 + m),

but y|(x2 + m) implies that y|x2(x2
1 + m), but gcd(x, y) = 1 implies that y|(x2

1 + m). Now
x1 > y ≤ x. Repeat the same argument to generate y1, but instead consider

x2
1 + m = yy1.

Then (x1, y1) is also a solution, with x1 + y1 > x + y. Continue this process to generate
(x2, y2),... and since m is fixed, xn + yn ≥ m + 1 for some n, thus (xn, yn), (xn+1, yn+1), ...
is a set of infinitely many solution pairs which satisfies all given conditions.

5. (a) Consider ai = ki + 1, bj = mj + 1. Suppose that two of the residues are the same.
Then mk divides aibj − asbt = (ki + 1)(mj + 1) − (ks + 1)(mt + 1) = km(ij − st) +
m(j − t) + k(i− s), and thus m|k(i− s) but gcd(m, k) = 1, hence m|(i− s), and since
|i− s| < m, we must have i = s and similarly j = t and we are done.

(b) Suppose all the residues are distinct. Then 0 is one the residues. WLOG, suppose
mk|a1b1. Hence there exists a′, b′ such that a′|a1, b

′|b1 and mk = a′b′. Suppose now
that for i 6= s, a′|(ai − as). Then we have mk = a′b′|(aib1 − asb1), which is a contra-
diction. Hence all the ai’s cannot have the same residue modulo a′, similarly, all the
bj ’s cannot have the same residue modulo b′. Thus we must have a′ ≥ m, b′ ≥ k thus
a′ = m, b′ = k.
Now let p be a prime divisor of m and k. p > 1 since gcd(m, k) > 1. Since all the ai’s
form a distinct set of residues modulo m, there are m − m

p between them which are
not divisible by p. Similarly, there are k − k

p bj ’s which are not divisible by p. On the
other hand all the aibj ’s form a set of reduced residues modulo mk by our assumption,
and hence between them, there are mk − mk

p which are not divisible by p. But(
m− m

p

) (
k − k

p

)
=

(
mk − mk

p

)
if and only if m = 0, k = 0 or p = 1, which is a contradiction.
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6. If n = 0, the result is clear. So suppose n > 0. Suppose the set of points (x1, x2, x3) which
lies on the sphere

n = x2 + y2 + z2

are all rational points. We will obtain a contradiction. Now there exists an integer point
u = (u1, u2, ..., un) such that ad = u, where d ≥ 2. Suppose that a and u are chosen such
that d is minimal. Then let x′, y′z′ be the integers closest to x, y, z, where a = (x, y, z).
Then |x− x′| ≤ 1

2 , |y − y′| ≤ 1
2 and |z − z′| ≤ 1

2 , hence ||a− a′|| < 1, where a′ = (x′, y′, z′).
Now consider the line connecting a and a′. This will intersect the sphere x2 + y2 + z2 = n
at two points, one at a and the other which we call b. The equation of the line is given by
a′ + λ(a− a′). Now b lies on the sphere so

n = ||b||2 = ||a′||2 + 2λ < a′, a− a′ > +λ2||a− a′||2.

One of the solutions to this equation is given by λ = 1, which correspond to the point a.
The other thus is given by λ = ||a′||2−n

||a−a′||2 . Now

||a− a′||2 = ||a′||2 + ||a||2 − 2 < a′, a >= ||a′||2 + n− 2
d

< a′, u >=
d1

d
,

where d1 ∈ ℵ and since ||a− a′||2 < 1 we have d1 < d. Hence λ = d(||a′||2−n)
d1

and we have

b = a′ + λ(a− a′)

= a′ +
||a′||2 − n

d1
(u− da′)

=
v

d1

where v is an integer point. Now b = vd1 with d1 < d contradicts our assumption that d is
minimal.
Note that a generalisation is not possible using this method since ||a− a′||2 < 1 will NOT
be satisfied for higher dimension spaces. For a one dimensional space, i.e. the real line,
this result is obvious. For a two dimensional space, i.e. the plane, this argument works.
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