Singapore International Mathematical Olympiad Training Problems

1. Let n be an odd integer which is not a multiple of 5 . Prove that there exists a strictly positive integer k such that n divides a string of $k 1$'s, i.e.

$$
n \mid \underbrace{11 \ldots 11}_{k 1 ' \mathrm{~s}} .
$$

2. Determine all natural numbers (k, m, n) such that

$$
n!=m^{k}
$$

3. Show that for all integers A, B, there exists an integer C such that the following sets $M_{1}=\left\{x^{2}+A x+B: x \in \mathbf{Z}\right\}$ and $M_{2}=\left\{2 x^{2}+2 x+C: x \in \mathbf{Z}\right\}$ are disjoint.
4. Let m be a strictly positive integer. Show that there exists infinitely many pairs of integers (x, y) such that
(a) x, y are relatively prime
(b) y divides $x^{2}+m$
(c) x divides $y^{2}+m$
(d) $x+y \geq m+1$

5 . Let m and k be positive integers such that $\operatorname{gcd}(m, k)=a$.
(a) Suppose that $a=1$. Show that there exists integers $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{k}$ such that each of the products $a_{i} b_{j}(i=1,2, \ldots, m, j=1,2, \ldots, k)$ gives a different remainder modulo $m k$.
(b) Suppose that $a>1$. Show that for all integers $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{k}$ there exists two products $a_{i} b_{j}$ and $a_{s} b_{t}((i, j) \neq(s, t))$ such that they have the same remainder modulo $m k$.
6. Let n be a non negative integer. Suppose that there exists rational numbers p, q, r such that

$$
n=p^{2}+q^{2}+r^{2}
$$

Prove that there exists integers a, b, c such that

$$
n=a^{2}+b^{2}+c^{2}
$$

1. From the given conditions $\operatorname{gcd}(n, 10)=1$. But $\operatorname{gcd}(9,10)=1$ and hence $\operatorname{gcd}(9 n, 10)=1$. Thus by Euler's Theorem,

$$
10^{\phi(9 n)} \equiv 1 \quad(\bmod 9 n)
$$

which implies the desired result.
2. Using Bertrand's Postulate, there exists a prime p satisfying $\frac{n}{2}<p<n$ for all $n \geq 3$. Now note that $2 p>n$, hence p only has a single power in n !, i.e. $k=1$. Hence $(m, n, k)=$ $(n!, n, 1)$ is a solution triplet. If $n=2$, we have $2=m^{k}$, hence we must have $m=2, k=1$. If $n=1$, we must have $1=m^{k}$, or $m=1, k \in \aleph$ thus $(m, n, k)=(1,1, k)$ is another solution triplet. Thus the only solutions to the equation are

$$
(m, n, k)=(1,1, k),(n!, n, 1), \quad n, k \in \aleph
$$

3. If A is odd, $x^{2}+A x+B \equiv x(x+A)+B \equiv B(\bmod 2)$, but $2 x^{2}+2 x+C \equiv C(\bmod 2)$. So we may choose $C=B+1$.
If A is even, $x^{2}+A x+B=\left(x+\frac{A}{2}\right)^{2}+B-\frac{A^{2}}{4} \equiv B-\frac{A^{2}}{4}$ or $B-\frac{A^{2}}{4}+1(\bmod 4)$, but $2 x^{2}+2 x+1 \equiv C(\bmod 4)$, so we may choose $C=B-\frac{A^{2}}{4}+2$ in this case.
4. Note that $(1,1)$ satisfies the given conditions. Now if (x, y) is a solution with $y \geq x$, consider $\left(x_{1}, y\right)$ where

$$
y^{2}+m=x x_{1}
$$

All common divisors of x_{1} and y must by the above a divisor of m, and since $y \mid x^{2}+x x_{1}-y^{2}$, we must have $y \mid x\left(x+x_{1}\right)$, and since $\operatorname{gcd}(x, y)=1$, we must have $y \mid\left(x+x_{1}\right)$, and hence the common divisor of y and x_{1} must divide x too, but $\operatorname{gcd}(x, y)=1$, we have $\operatorname{gcd}\left(x_{1}, y\right)=1$. It is clear that $x_{1} \mid y^{2}+m$, and

$$
x^{2}\left(x_{1}^{2}+m\right)=\left(y^{2}+m\right)^{2}+x^{2} m=y^{4}+2 m y^{2}+m\left(x^{2}+m\right)
$$

but $y \mid\left(x^{2}+m\right)$ implies that $y \mid x^{2}\left(x_{1}^{2}+m\right)$, but $\operatorname{gcd}(x, y)=1$ implies that $y \mid\left(x_{1}^{2}+m\right)$. Now $x_{1}>y \leq x$. Repeat the same argument to generate y_{1}, but instead consider

$$
x_{1}^{2}+m=y y_{1}
$$

Then $\left(x_{1}, y_{1}\right)$ is also a solution, with $x_{1}+y_{1}>x+y$. Continue this process to generate $\left(x_{2}, y_{2}\right), \ldots$ and since m is fixed, $x_{n}+y_{n} \geq m+1$ for some n, thus $\left(x_{n}, y_{n}\right),\left(x_{n+1}, y_{n+1}\right), \ldots$ is a set of infinitely many solution pairs which satisfies all given conditions.
5. (a) Consider $a_{i}=k i+1, b_{j}=m j+1$. Suppose that two of the residues are the same. Then $m k$ divides $a_{i} b_{j}-a_{s} b_{t}=(k i+1)(m j+1)-(k s+1)(m t+1)=k m(i j-s t)+$ $m(j-t)+k(i-s)$, and thus $m \mid k(i-s)$ but $\operatorname{gcd}(m, k)=1$, hence $m \mid(i-s)$, and since $|i-s|<m$, we must have $i=s$ and similarly $j=t$ and we are done.
(b) Suppose all the residues are distinct. Then 0 is one the residues. WLOG, suppose $m k \mid a_{1} b_{1}$. Hence there exists a^{\prime}, b^{\prime} such that $a^{\prime}\left|a_{1}, b^{\prime}\right| b_{1}$ and $m k=a^{\prime} b^{\prime}$. Suppose now that for $i \neq s, a^{\prime} \mid\left(a_{i}-a_{s}\right)$. Then we have $m k=a^{\prime} b^{\prime} \mid\left(a_{i} b_{1}-a_{s} b_{1}\right)$, which is a contradiction. Hence all the a_{i} 's cannot have the same residue modulo a^{\prime}, similarly, all the b_{j} 's cannot have the same residue modulo b^{\prime}. Thus we must have $a^{\prime} \geq m, b^{\prime} \geq k$ thus $a^{\prime}=m, b^{\prime}=k$.
Now let p be a prime divisor of m and $k . p>1$ since $\operatorname{gcd}(m, k)>1$. Since all the a_{i} 's form a distinct set of residues modulo m, there are $m-\frac{m}{p}$ between them which are not divisible by p. Similarly, there are $k-\frac{k}{p} b_{j}$'s which are not divisible by p. On the other hand all the $a_{i} b_{j}$'s form a set of reduced residues modulo $m k$ by our assumption, and hence between them, there are $m k-\frac{m k}{p}$ which are not divisible by p. But

$$
\left(m-\frac{m}{p}\right)\left(k-\frac{k}{p}\right)=\left(m k-\frac{m k}{p}\right)
$$

if and only if $m=0, k=0$ or $p=1$, which is a contradiction.
6. If $n=0$, the result is clear. So suppose $n>0$. Suppose the set of points (x_{1}, x_{2}, x_{3}) which lies on the sphere

$$
n=x^{2}+y^{2}+z^{2}
$$

are all rational points. We will obtain a contradiction. Now there exists an integer point $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ such that $a d=u$, where $d \geq 2$. Suppose that a and u are chosen such that d is minimal. Then let $x^{\prime}, y^{\prime} z^{\prime}$ be the integers closest to x, y, z, where $a=(x, y, z)$. Then $\left|x-x^{\prime}\right| \leq \frac{1}{2},\left|y-y^{\prime}\right| \leq \frac{1}{2}$ and $\left|z-z^{\prime}\right| \leq \frac{1}{2}$, hence $\left|\left|a-a^{\prime}\right|\right|<1$, where $a^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. Now consider the line connecting a and a^{\prime}. This will intersect the sphere $x^{2}+y^{2}+z^{2}=n$ at two points, one at a and the other which we call b. The equation of the line is given by $a^{\prime}+\lambda\left(a-a^{\prime}\right)$. Now b lies on the sphere so

$$
n=\|b\|^{2}=\left\|a^{\prime}\right\|^{2}+2 \lambda<a^{\prime}, a-a^{\prime}>+\lambda^{2}\left\|a-a^{\prime}\right\|^{2} .
$$

One of the solutions to this equation is given by $\lambda=1$, which correspond to the point a. The other thus is given by $\lambda=\frac{\left\|a^{\prime}\right\|^{2}-n}{\left\|a-a^{\prime}\right\|^{2}}$. Now

$$
\left.\left\|a-a^{\prime}\right\|^{2}=\left\|a^{\prime}\right\|^{2}+\|a\|^{2}-2<a^{\prime}, a>=\left\|a^{\prime}\right\|^{2}+n-\frac{2}{d}<a^{\prime}, u\right\rangle=\frac{d_{1}}{d},
$$

where $d_{1} \in \aleph$ and since $\left\|a-a^{\prime}\right\|^{2}<1$ we have $d_{1}<d$. Hence $\lambda=\frac{d\left(\left\|a^{\prime}\right\|^{2}-n\right)}{d_{1}}$ and we have

$$
\begin{aligned}
b & =a^{\prime}+\lambda\left(a-a^{\prime}\right) \\
& =a^{\prime}+\frac{\left\|a^{\prime}\right\|^{2}-n}{d_{1}}\left(u-d a^{\prime}\right) \\
& =\frac{v}{d_{1}}
\end{aligned}
$$

where v is an integer point. Now $b=v d_{1}$ with $d_{1}<d$ contradicts our assumption that d is minimal.
Note that a generalisation is not possible using this method since $\left\|a-a^{\prime}\right\|^{2}<1$ will NOT be satisfied for higher dimension spaces. For a one dimensional space, i.e. the real line, this result is obvious. For a two dimensional space, i.e. the plane, this argument works.

