Singapore International Mathematical Olympiad 2008
 Senior Team Training

Take Home Test Solutions

1. Show that the equation $15 x^{2}-7 y^{2}=9$ has no solution in integers.

If the equation has a solution in integer, then

$$
\begin{aligned}
& 15 x^{2}-7 y^{2}=9 \\
\Rightarrow & -y^{2} \equiv 0 \quad(\bmod 3) \\
\Rightarrow & y \equiv 0 \quad(\bmod 3) .
\end{aligned}
$$

Hence $y=3 y_{1}$ for some integer y_{1}. This implies that

$$
\begin{aligned}
& 15 x^{2}-7\left(3 y_{1}\right)^{2}=9 \\
\Rightarrow & 5 x^{2}-21 y_{1}^{2}=3 \\
\Rightarrow & 2 x^{2} \equiv 0 \quad(\bmod 3) \\
\Rightarrow & x \equiv 0 \quad(\bmod 3) .
\end{aligned}
$$

Hence $x=3 x_{1}$ for some integer x_{1}. This implies that

$$
\begin{aligned}
& 15\left(3 x_{1}\right)^{2}-7\left(3 y_{1}\right)^{2}=9 \\
\Rightarrow & 15 x_{1}^{2}-7 y_{1}^{2}=1 \\
\Rightarrow & -y_{1}^{2} \equiv 1 \quad(\bmod 3) \\
\Rightarrow & y_{1}^{2} \equiv 2 \quad(\bmod 3) .
\end{aligned}
$$

The last congruence is impossible.
Hence the given equation has no solution in integers.
2. Let n and k be positive integers. Prove that

$$
\left(n^{4}-1\right)\left(n^{3}-n^{2}+n-1\right)^{k}+(n+1) n^{4 k-1}
$$

is divisible by $n^{5}+1$.

We prove by induction on k :
When $k=1$, we have

$$
\begin{aligned}
& \left(n^{4}-1\right)\left(n^{3}-n^{2}+n-1\right)+(n+1) n^{3} \\
= & n^{7}-n^{6}+n^{5}+n^{2}-n+1 \\
= & n^{2}\left(n^{5}+1\right)-n\left(n^{5}+1\right)+n^{5}+1 \\
= & \left(n^{5}+1\right)\left(n^{2}-n+1\right) .
\end{aligned}
$$

So the statement is true for $k=1$. Now assume that the statement is true for k and consider the case $k+1$, we have

$$
\begin{aligned}
& \left(n^{4}-1\right)\left(n^{3}-n^{2}+n-1\right)^{k+1}+(n+1) n^{4(k+1)-1} \\
= & \left(n^{4}-1\right)\left(n^{3}-n^{2}+n-1\right)^{k}\left(n^{3}-n^{2}+n-1\right)+(n+1) n^{4 k-1} n^{4} \\
= & {\left[\left(n^{4}-1\right)\left(n^{3}-n^{2}+n-1\right)^{k}\left(n^{3}-n^{2}+n-1\right)+(n+1) n^{4 k-1}\left(n^{3}-n^{2}+n-1\right)\right] } \\
& +\left[(n+1) n^{4 k-1} n^{4}-(n+1) n^{4 k-1}\left(n^{3}-n^{2}+n-1\right)\right] \\
= & \left(n^{3}-n^{2}+n-1\right)\left[\left(n^{4}-1\right)\left(n^{3}-n^{2}+n-1\right)^{k}+(n+1) n^{4 k-1}\right] \\
& +n^{4 k-1}(n+1)\left(n^{4}-n^{3}+n^{2}-n+1\right) \\
= & \left(n^{3}-n^{2}+n-1\right)\left[\left(n^{4}-1\right)\left(n^{3}-n^{2}+n-1\right)^{k}+(n+1) n^{4 k-1}\right]+n^{4 k-1}\left(n^{5}+1\right) .
\end{aligned}
$$

This is divisible by $n^{5}+1$ by induction hypothesis. Hence the statement is true for $k+1$. This completes the induction.
3. Let

$$
\begin{aligned}
f(x) & =(x+1)^{p}(x-3)^{q} \\
& =x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-1} x+a_{n}
\end{aligned}
$$

where p and q are positive integers.
(1) Given that $a_{1}=a_{2}$, prove that $3 n$ is a perfect square.
(2) (b) Prove that there exist infinitely many pairs (p, q) of positive integers p and q such that the equality $a_{1}=a_{2}$ is valid for the polynomial $p(x)$.
(Belarussian 2003)
(a) Since

$$
\begin{aligned}
& (x+1)^{p}=x^{p}+p x^{p-1}+\frac{p(p-1)}{2} x^{p-2}+\cdots \\
& (x-3)^{q}=x^{q}-3 q x^{q-1}+\frac{9 q(q-1)}{2} x^{q-2}+\cdots,
\end{aligned}
$$

we have $n=p+q, a_{1}=p-3 q, a_{2}=\frac{9 q^{2}-9 q+p^{2}-p-6 p q}{2}$. Therefore

$$
\begin{aligned}
& a_{1}=a_{2} \\
& \Leftrightarrow 2 p-6 q=9 q^{2}-9 q+p^{2}-p-6 p q \\
& \Leftrightarrow(3 q-p)^{2}=3(p+q) .
\end{aligned}
$$

Since $n=p+q$, we are done.
(b) This is equivalent to showing that the equation $(3 q-p)^{2}=3(p+q)$ has an infinite family of solutions in positive integers. Treating this as a
quadratic equation in p,

$$
9 p^{2}-(6 q+3) p+\left(9 q^{2}-3 q\right)=0
$$

we have

$$
p=6 q+3 \pm \sqrt{\frac{48 q+9}{2}}
$$

Thus $48 q+9$ is an odd square. Hence

$$
48 q+9=(2 k+1)^{2}, \text { or } q=\frac{k^{2}+k-2}{12}
$$

Let $k=12 t+1$, then $q=12 t^{2}+3 t$ and $p=36 t^{2}-3 t$, where $t \in \mathbb{N}$ is the required infinite family.
4. Show that if $m<n$, then $2^{2^{m}}+1$ divides $2^{2^{n}}-1$. Hence deduce that $2^{2^{m}}+1$ and $2^{2^{n}}+1$ are relatively prime. Conclude that there are infinitely many primes.

If $m<n$ then $n=m+k$ for some integer $k \geq 1$, so we have

$$
2^{2^{n}}-1=2^{2^{m} 2^{k}}-1=\left(2^{2^{m}}+1\right)\left(2^{2^{m}\left(2^{k}-1\right)}-2^{2^{m}\left(2^{k}-2\right)}+-\cdots+2^{2^{m}}-1\right) .
$$

Hence $2^{2^{m}}+1$ divides $2^{2^{n}}-1$.
Let $d=\operatorname{gcd}\left(2^{2^{m}}+1,2^{2^{n}}+1\right)$. By above, we have

$$
\begin{aligned}
& 2^{2^{n}}+1=\left(2^{2^{n}}-1\right)+2=l\left(2^{2^{m}}+1\right)+2 \text { for some integer } l \\
\Rightarrow & d \mid 2 \quad\left(\text { since } d \mid\left(2^{2^{m}}+1\right) \text { and } d \mid\left(2^{2^{n}}+1\right)\right) \\
\Rightarrow & d=1 \text { or } d=2 \\
\Rightarrow & d=1 \quad\left(\text { since } 2^{2^{m}}+1 \text { is odd }\right)
\end{aligned}
$$

Thus $\operatorname{gcd}\left(2^{2^{m}}+1,2^{2^{n}}+1\right)=1$, i.e. $2^{2^{m}}+1$ and $2^{2^{n}}+1$ are relatively prime. For any positive integer n, let p_{n} be a prime divisor of $2^{2^{n}}+1$. For any m, n with $n \neq m$, we have $p_{n} \neq p_{m}$ since $2^{2^{n}}+1$ and $2^{2^{m}}+1$ are relatively prime. Hence $\left\{p_{1}, p_{2}, p_{3} \ldots\right\}$ is an infinite set of primes.
5. Let x, y, z be positive numbers so that $x y z=1$. Prove that

$$
x+y+z \geq \sqrt[3]{\frac{z}{x}}+\sqrt[3]{\frac{x}{y}}+\sqrt[3]{\frac{y}{z}}
$$

By AM-GM inequality,

$$
\begin{aligned}
& y+z+z \geq 3 \sqrt[3]{y z^{2}}=3 \sqrt[3]{\frac{z}{x}} \\
& x+x+z \geq 3 \sqrt[3]{x^{2} z}=3 \sqrt[3]{\frac{x}{y}}
\end{aligned}
$$

and

$$
x+y+y \geq 3 \sqrt[3]{x y^{2}}=3 \sqrt[3]{\frac{y}{z}}
$$

Summing the three inequalities gives the desired result.
6. Let $p_{1}, p_{2}, \ldots, p_{n}(n \geq 2)$ be any rearrangement of $1,2, \ldots n$. Show that

$$
\frac{1}{p_{1}+p_{2}}+\frac{1}{p_{2}+p_{3}}+\cdots+\frac{1}{p_{n-1}+p_{n}}>\frac{n-1}{n+2} .
$$

Since $A M \geq H M$,

$$
\begin{aligned}
\frac{1}{n-1}\left[\left(p_{1}+p_{2}\right)\right. & \left.+\left(p_{2}+p_{3}\right)+\cdots+\left(p_{n-1}+p_{n}\right)\right] \\
& \geq\left\{\frac{1}{n-1}\left[\frac{1}{p_{1}+p_{2}}+\cdots+\frac{1}{p_{n-1}+p_{n}}\right]\right\}^{-1} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{1}{p_{1}+p_{2}} & +\cdots+\frac{1}{p_{n-1}+p_{n}} \\
& \geq \frac{(n-1)^{2}}{2\left(p_{1}+\cdots+p_{n}\right)-p_{1}-p_{n}} \\
& \geq \frac{(n-1)^{2}}{n(n+1)-3}=\frac{(n-1)^{2}}{(n-1)(n+2)-1} \\
& >\frac{(n-1)^{2}}{(n-1)(n+2)}=\frac{n-1}{n+2} .
\end{aligned}
$$

7. From a point P outside a circle, tangent lines $P A$ and $P B$ are drawn with A and B on the circle. A third line $P C D$ meets the circle at C and D, with C lying in between P and D. A point Q is chosen on the chord $C D$ so that $\angle D A Q=\angle P B C$. Show that $\angle D B Q=\angle P A C$.

Since

$$
\begin{aligned}
& \angle A B C=\angle A D Q \\
& \angle B A C=\angle P B C=\angle D A Q,
\end{aligned}
$$

$\triangle A D Q \sim \triangle A B C$. Thus $B C \cdot A D=A B \cdot D Q$. Also, $\triangle P C A \sim \triangle P A D$. Hence $\frac{P C}{P A}=\frac{A C}{A D}$. Similarly, $\frac{P C}{P B}=\frac{B C}{B D}$. But $P A=P B$. So we have $\frac{A C}{A D}=\frac{B C}{B D}$, and thus $A C \cdot B D=B C \cdot A D=A B \cdot D Q$. By Ptolemy's Theorem,

$$
A C \cdot B D+B C \cdot A D=A B \cdot C D
$$

Therefore, $A B \cdot C D=2 A B \cdot D Q$, or $D Q=\frac{1}{2} C D$. So Q is the midpoint of $C D$. Now $\frac{A D}{A B}=\frac{D Q}{B C}=\frac{C Q}{B C}$ and $\angle B C Q=\angle B A D$. It follows that $\triangle C B Q \sim$ $\triangle A B D$. Hence $\angle C B Q=\angle A B D$. Thus $\angle D B Q=\angle A B C=\angle P A C$.
8. In triangle $A B C, \angle A=60^{\circ}$ and $A B>A C$. The altitudes $B E$ and $C F$ intersect at H. Points M and N are chosen on the segments $B H$ and $H F$ so that $B M=C N$. If O is the circumcircle of $A B C$, find the ratio

$$
\frac{M H+N H}{O H} .
$$

Note that $\angle B O C=2 \angle A=120^{\circ}$ and $\angle B H C=180^{\circ}-\angle A=120^{\circ}$ (since A, E, H, F are concyclic). Hence B, O, H, C are concyclic. Thus $\angle O B H=$ $\angle O C H$. As $B O=C O$ and $B M=C N$ as well, $\triangle O B M$ is congruent to $\triangle O C N$. Hence $O M=O N$ and $\angle B M O=\angle C N O$. It follows that O, M, H, N are concyclic. Therefore, $\angle N O M=\angle N H E=120^{\circ}$. Also,

$$
\angle O N M=\angle O H M=\angle O H B=\angle O C B=30^{\circ} .
$$

Thus

$$
\frac{M N}{O M}=\frac{\sin 120^{\circ}}{\sin 30^{\circ}}=\sqrt{3}
$$

Finally, from Ptolemy's Theorem, we have

$$
M H \cdot O N+N H \cdot O M=O H \cdot M N .
$$

Therefore,

$$
\frac{M H+N H}{O H}=\frac{M N}{O M}=\sqrt{3} .
$$

9. On the plane, there are 3 mutually and externally disjoint circles Γ_{1}, Γ_{2} and Γ_{3} centred at X_{1}, X_{2} and X_{3} respectively. The two internal common tangents of Γ_{2} and $\Gamma_{3},\left(\Gamma_{3}\right.$ and Γ_{1}, Γ_{1} and $\left.\Gamma_{2}\right)$ meet at $P,(Q, R$ respectively $)$. Prove that $X_{1} P, X_{2} Q$ and $X_{3} Z$ are concurrent.

Let the radii of Γ_{1}, Γ_{2} and Γ_{3} be r_{1}, r_{2} and r_{3} respectively. Then $X_{1} R$: $R X_{2}:=r_{1}: r_{2}, X_{2} P: P X_{3}:=r_{2}: r_{3}$ and $X_{3} Q: Q X_{1}:=r_{3}: r_{1}$. Thus

$$
\frac{X_{1} R}{R X_{2}} \cdot \frac{X_{2} P}{P X_{3}} \cdot \frac{X_{3} Q}{Q X_{1}}=1 .
$$

By the converse of Ceva's Theorem, $X_{1} P, X_{2} Q$ and $X_{3} Z$ are concurrent.
10. The excircle centred at I_{a} with respect to $\angle A$ of $\triangle A B C$ touches the sides $A B, B C$ and $A C$ or their extensions at E, D and F respectively. Let H be the foot of the perpendicular from B onto $I_{a} C$. Prove that E, H, F are collinear.

Join $E H, F H, D H, E I_{a}, B I_{a}$. Then E, I_{a}, H, B are concylic. Also D, B, E, I_{a} are concylic. Thus B, E, I_{a}, H, D all lie on a circle with diameter $B I_{a}$. As $B D=B E$, we have $\angle B H D=\angle B H E$. On the other hand, $\triangle D H C$ is congruent to $\triangle C H F$ so that $\angle D H C=\angle C H F$. As $\angle B H C=90^{\circ}$, we have $\angle D H E+\angle D H F=2 \angle B H C=180^{\circ}$. Therefore, E, H, F are collinear.

