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1. Show that the equation 15x2 − 7y2 = 9 has no solution in integers.

If the equation has a solution in integer, then

15x2 − 7y2 = 9

⇒ −y2 ≡ 0 (mod 3)

⇒ y ≡ 0 (mod 3).

Hence y = 3y1 for some integer y1. This implies that

15x2 − 7(3y1)2 = 9

⇒ 5x2 − 21y2
1 = 3

⇒ 2x2 ≡ 0 (mod 3)

⇒ x ≡ 0 (mod 3).

Hence x = 3x1 for some integer x1. This implies that

15(3x1)2 − 7(3y1)2 = 9

⇒ 15x2
1 − 7y2

1 = 1

⇒ −y2
1 ≡ 1 (mod 3)

⇒ y2
1 ≡ 2 (mod 3).

The last congruence is impossible.
Hence the given equation has no solution in integers.

2. Let n and k be positive integers. Prove that

(n4 − 1)(n3 − n2 + n− 1)k + (n + 1)n4k−1

is divisible by n5 + 1.

We prove by induction on k:
When k = 1, we have

(n4 − 1)(n3 − n2 + n− 1) + (n + 1)n3

= n7 − n6 + n5 + n2 − n + 1

= n2(n5 + 1)− n(n5 + 1) + n5 + 1

= (n5 + 1)(n2 − n + 1).
1
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So the statement is true for k = 1. Now assume that the statement is true
for k and consider the case k + 1, we have

(n4 − 1)(n3 − n2 + n− 1)k+1 + (n + 1)n4(k+1)−1

= (n4 − 1)(n3 − n2 + n− 1)k(n3 − n2 + n− 1) + (n + 1)n4k−1n4

= [(n4 − 1)(n3 − n2 + n− 1)k(n3 − n2 + n− 1) + (n + 1)n4k−1(n3 − n2 + n− 1)]

+ [(n + 1)n4k−1n4 − (n + 1)n4k−1(n3 − n2 + n− 1)]

= (n3 − n2 + n− 1)[(n4 − 1)(n3 − n2 + n− 1)k + (n + 1)n4k−1]

+ n4k−1(n + 1)(n4 − n3 + n2 − n + 1)

= (n3 − n2 + n− 1)[(n4 − 1)(n3 − n2 + n− 1)k + (n + 1)n4k−1] + n4k−1(n5 + 1).

This is divisible by n5 + 1 by induction hypothesis. Hence the statement is
true for k + 1. This completes the induction.

3. Let
f(x) = (x + 1)p(x− 3)q

= xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x + an,

where p and q are positive integers.

(1) Given that a1 = a2, prove that 3n is a perfect square.
(2) (b) Prove that there exist infinitely many pairs (p, q) of positive

integers p and q such that the equality a1 = a2 is valid for the
polynomial p(x).

(Belarussian 2003)
(a) Since

(x + 1)p = xp + pxp−1 +
p(p− 1)

2
xp−2 + · · ·

(x− 3)q = xq − 3qxq−1 +
9q(q − 1)

2
xq−2 + · · · ,

we have n = p + q, a1 = p− 3q, a2 = 9q2−9q+p2−p−6pq
2 . Therefore

a1 = a2

⇔2p− 6q = 9q2 − 9q + p2 − p− 6pq

⇔(3q − p)2 = 3(p + q).

Since n = p + q, we are done.

(b) This is equivalent to showing that the equation (3q − p)2 = 3(p + q)
has an infinite family of solutions in positive integers. Treating this as a
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quadratic equation in p,

9p2 − (6q + 3)p + (9q2 − 3q) = 0

we have

p = 6q + 3±
√

48q + 9
2

.

Thus 48q + 9 is an odd square. Hence

48q + 9 = (2k + 1)2, or q =
k2 + k − 2

12
Let k = 12t + 1, then q = 12t2 + 3t and p = 36t2 − 3t, where t ∈ N is the
required infinite family.

4. Show that if m < n, then 22m
+ 1 divides 22n − 1. Hence deduce that

22m
+ 1 and 22n

+ 1 are relatively prime. Conclude that there are infinitely
many primes.

If m < n then n = m + k for some integer k ≥ 1, so we have

22n − 1 = 22m2k − 1 = (22m
+ 1)(22m(2k−1) − 22m(2k−2) +− · · ·+ 22m − 1).

Hence 22m
+ 1 divides 22n − 1.

Let d = gcd(22m
+ 1, 22n

+ 1). By above, we have

22n
+ 1 = (22n − 1) + 2 = l(22m

+ 1) + 2 for some integer l

⇒ d|2 (since d|(22m
+ 1) and d|(22n

+ 1))

⇒ d = 1 or d = 2

⇒ d = 1 (since 22m
+ 1 is odd)

Thus gcd(22m
+ 1, 22n

+ 1) = 1, i.e. 22m
+ 1 and 22n

+ 1 are relatively prime.
For any positive integer n, let pn be a prime divisor of 22n

+ 1. For any m, n

with n 6= m, we have pn 6= pm since 22n
+1 and 22m

+1 are relatively prime.
Hence {p1, p2, p3 . . .} is an infinite set of primes.

5. Let x, y, z be positive numbers so that xyz = 1. Prove that

x + y + z ≥ 3

√
z

x
+ 3

√
x

y
+ 3

√
y

z
.

By AM-GM inequality,

y + z + z ≥ 3 3
√

yz2 = 3 3

√
z

x
,

x + x + z ≥ 3 3
√

x2z = 3 3

√
x

y
,
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and

x + y + y ≥ 3 3
√

xy2 = 3 3

√
y

z
.

Summing the three inequalities gives the desired result.

6. Let p1, p2, . . . , pn (n ≥ 2) be any rearrangement of 1, 2, . . . n. Show that
1

p1 + p2
+

1
p2 + p3

+ · · ·+ 1
pn−1 + pn

>
n− 1
n + 2

.

Since AM ≥ HM ,

1
n− 1

[(p1 + p2) + (p2 + p3) + · · ·+ (pn−1 + pn)]

≥
{ 1

n− 1
[ 1
p1 + p2

+ · · ·+ 1
pn−1 + pn

]}−1
.

Thus
1

p1 + p2
+ · · ·+ 1

pn−1 + pn

≥ (n− 1)2

2(p1 + · · ·+ pn)− p1 − pn

≥ (n− 1)2

n(n + 1)− 3
=

(n− 1)2

(n− 1)(n + 2)− 1

>
(n− 1)2

(n− 1)(n + 2)
=

n− 1
n + 2

.
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7. From a point P outside a circle, tangent lines PA and PB are drawn
with A and B on the circle. A third line PCD meets the circle at C and D,
with C lying in between P and D. A point Q is chosen on the chord CD so
that ∠DAQ = ∠PBC. Show that ∠DBQ = ∠PAC.

Since

∠ABC = ∠ADQ

∠BAC = ∠PBC = ∠DAQ,

4ADQ ∼ 4ABC. Thus BC · AD = AB · DQ. Also, 4PCA ∼ 4PAD.
Hence PC

PA = AC
AD . Similarly, PC

PB = BC
BD . But PA = PB. So we have

AC
AD = BC

BD , and thus AC · BD = BC · AD = AB · DQ. By Ptolemy’s
Theorem,

AC ·BD + BC ·AD = AB · CD.

Therefore, AB · CD = 2AB ·DQ, or DQ = 1
2CD. So Q is the midpoint of

CD. Now AD
AB = DQ

BC = CQ
BC and ∠BCQ = ∠BAD. It follows that 4CBQ ∼

4ABD. Hence ∠CBQ = ∠ABD. Thus ∠DBQ = ∠ABC = ∠PAC.
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8. In triangle ABC, ∠A = 60◦ and AB > AC. The altitudes BE and CF

intersect at H. Points M and N are chosen on the segments BH and HF

so that BM = CN . If O is the circumcircle of ABC, find the ratio
MH + NH

OH
.

Note that ∠BOC = 2∠A = 120◦ and ∠BHC = 180◦ − ∠A = 120◦ (since
A, E, H, F are concyclic). Hence B, O,H, C are concyclic. Thus ∠OBH =
∠OCH. As BO = CO and BM = CN as well, 4OBM is congruent
to 4OCN . Hence OM = ON and ∠BMO = ∠CNO. It follows that
O,M, H, N are concyclic. Therefore, ∠NOM = ∠NHE = 120◦. Also,

∠ONM = ∠OHM = ∠OHB = ∠OCB = 30◦.

Thus
MN

OM
=

sin 120◦

sin 30◦
=
√

3.

Finally, from Ptolemy’s Theorem, we have

MH ·ON + NH ·OM = OH ·MN.

Therefore,
MH + NH

OH
=

MN

OM
=
√

3.
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9. On the plane, there are 3 mutually and externally disjoint circles Γ1, Γ2

and Γ3 centred at X1, X2 and X3 respectively. The two internal common
tangents of Γ2 and Γ3, (Γ3 and Γ1, Γ1 and Γ2) meet at P , (Q, R respectively).
Prove that X1P,X2Q and X3Z are concurrent.

Let the radii of Γ1, Γ2 and Γ3 be r1, r2 and r3 respectively. Then X1R :
RX2 := r1 : r2, X2P : PX3 := r2 : r3 and X3Q : QX1 := r3 : r1. Thus

X1R

RX2
· X2P

PX3
· X3Q

QX1
= 1.

By the converse of Ceva’s Theorem, X1P,X2Q and X3Z are concurrent.
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10. The excircle centred at Ia with respect to ∠A of 4ABC touches the
sides AB, BC and AC or their extensions at E,D and F respectively. Let
H be the foot of the perpendicular from B onto IaC. Prove that E,H, F

are collinear.

Join EH, FH, DH,EIa, BIa. Then E, Ia, H, B are concylic. Also D,B,E, Ia

are concylic. Thus B, E, Ia, H, D all lie on a circle with diameter BIa. As
BD = BE, we have ∠BHD = ∠BHE. On the other hand, 4DHC is
congruent to 4CHF so that ∠DHC = ∠CHF . As ∠BHC = 90◦, we have
∠DHE + ∠DHF = 2∠BHC = 180◦. Therefore, E,H, F are collinear.


