Singapore International Mathematical Olympiad 2009
 Senior Team Training

Quiz

1. Let p and q be distinct odd primes. Prove that

$$
\sum_{\substack{0<j<p / 2 \\ j \text { odd }}}\left\lfloor\frac{q j}{p}\right\rfloor \equiv \sum_{\substack{p / 2<i<p \\ i \text { even }}}\left\lfloor\frac{q i}{p}\right\rfloor \quad(\bmod 2) .
$$

In the graph of $y=q x / p$, Let $A=(0,0), B=(p, 0), C=(p, q), D=(0, q)$, $X=(p / 2,0), Y=(p / 2, q / 2)$ and $Z=(p / 2, q)$. There are $p-1$, which is even, lattice points on each vertical line $x=k$, in the interior of rectangle $A B C D$. If a_{k} is the number of lattice points that are below the line $A C b_{k}$ is the the number of lattice points above the line $A C$. Then $a_{k}+b_{k}=p-1$. Thus $a_{k} \equiv b_{k}(\bmod 2)$.
Let α be the number of lattice points with even x-coordinate in the region $X B C Y, \beta$ be the number of lattice points with even x-coordinates in the region $C Y Z$ and γ be the number of lattice points with odd x-coordinates in the region $A X Y$. Then α is the lhs and γ is the rhs. From the above consideration $\alpha \equiv \beta(\bmod 2)$. Also note that the number of lattice points in the region $C Y Z$ with x-coordinate $\lceil p / 2\rceil+i$ is equal to the number of lattice points in the region $A X Y$ with x-coordinate $\lfloor p / 2\rfloor-i$. Moreover, $\lceil p / 2\rceil$ and $\lfloor p / 2\rfloor$ have opposite parity. Thus $\beta \equiv \gamma(\bmod 2)$.
2. Let M be a point on the plane containing a triangle $A B C$. The lines $M A, M B$ and $M C$ intersect the lines $B C, C A$ and $A B$ at D, E and F respectively. The circumcircle of $\triangle D E F$ meets the lines $B C, C A$ and $A B$ respectively at D^{\prime}, E^{\prime} and F^{\prime}. Prove that $A D^{\prime}, B E^{\prime}$ and $C F^{\prime}$ are concurrent.

Using Ceva' Theorem, we have $\frac{B D}{D C} \cdot \frac{C E}{E A} \cdot \frac{A F}{F B}=1$. Also, $B D \cdot B D^{\prime}=B F \cdot B F^{\prime}$, $C E \cdot C E^{\prime}=C D \cdot C D^{\prime}$ and $A F \cdot A F^{\prime}=A E \cdot A E^{\prime}$. Thus

$$
\frac{B D^{\prime}}{B F^{\prime}} \cdot \frac{C E^{\prime}}{C D^{\prime}} \cdot \frac{A F^{\prime}}{A E^{\prime}}=\frac{B F}{B D} \cdot \frac{C D}{C E} \cdot \frac{A E}{A F}=1 .
$$

Thus $\frac{B D^{\prime}}{D^{\prime} C} \cdot \frac{C E^{\prime}}{E^{\prime} A} \cdot \frac{A F^{\prime}}{F^{\prime} B}=1$. By the converse of Ceva's Theorem, $A D^{\prime}, B E^{\prime}$ and $C F^{\prime}$ are concurrent.
3. Let a, b, c, d be nonnegative real numbers. Show that

$$
\left(\frac{a b c+b c d+c d a+d a b}{4}\right)^{2} \leq\left(\frac{a b+b c+c d+d a+a c+b d}{6}\right)^{3} .
$$

[Remark: The proof I have is unsatisfying in many respects. You are welcome to contribute better proofs.]

First observe that the inequality to be shown is symmetric in the variables a, b, c, d and homogeneous. If $d=0$, the inequality follows easily from AM-GM: $(a b c)^{2 / 3} \leq \frac{a b+a c+b c}{3}$. Otherwise, we may assume that $a \geq b \geq c \geq d=1$. Denote by C the number $(a b c)^{1 / 3}$. By our assumption, $C \geq 1$.

Claim. The function

$$
f(x)=\left(\frac{x+C}{2}\right)^{3}-\left(\frac{3 x+C^{3}}{4}\right)^{2}
$$

is increasing for $x \geq C^{2}$.
The only proof I have of the Claim is to use differential calculus to show that $f^{\prime}(x) \geq 0$ for $x \geq C^{2}$.

Assuming the claim, we find that for $x \geq C^{2}$,

$$
f(x) \geq f\left(C^{2}\right)=\frac{C^{3}}{16}\left(C^{3}-3 C+2\right)=\frac{C^{3}}{16}(C-1)\left(C^{2}+C-2\right) \geq 0
$$

since $C \geq 1$. By AM-GM inequality $\frac{a b+a c+b c}{3} \geq C^{2}$. Thus $f\left(\frac{a b+a c+b c}{3}\right) \geq 0$. Thus

$$
\left(\frac{a b+a c+b c+C^{3}}{4}\right)^{2} \leq\left(\frac{a b+a c+b c+3 C}{6}\right)^{3} .
$$

By AM-GM inequality, $3 C \leq a+b+c$. Hence

$$
\left(\frac{a b+a c+b c+a b c}{4}\right)^{2} \leq\left(\frac{a b+a c+b c+a+b+c}{6}\right)^{3},
$$

which is the inequality required (setting $d=1$).
4. Let $A B C D E F$ be a convex hexagon inscribed in a circle. Assume that $A B=B C, C D=D E$ and $E F=F A$. Show that

$$
\frac{B C}{B E}+\frac{D E}{D A}+\frac{F A}{F C} \geq \frac{3}{2} .
$$

Consider the cyclic quadrilateral $A C E F$. By Ptolemy's Theorem,

$$
A C \cdot E F+C E \cdot F A=A E \cdot F C .
$$

Dividing by $F C(A C+C E)$ and using the fact that $E F=F A$, we have

$$
\frac{F A}{F C}=\frac{A E}{A C+C E} .
$$

Similarly,

$$
\begin{aligned}
& \frac{B C}{B E}=\frac{A C}{C E+A E} \\
& \frac{D E}{D A}=\frac{C E}{A E+A C} .
\end{aligned}
$$

Let $A C=a, C E=b$ and $A E=c$. Then

$$
\frac{B C}{B E}+\frac{D E}{D A}+\frac{F A}{F C}=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} .
$$

By AM-HM inequality,

$$
\frac{3}{\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{a+c}} \leq \frac{b+c+a+b+a+c}{3} .
$$

Hence

$$
\frac{9}{2} \leq(a+b+c)\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{a+c}\right)=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3 .
$$

The desired inequality follows.
5. Let k be a given positive integer. Find the smallest n in terms of k so that for any set A of n integers, there are always two elements in A whose sum or difference is divisible by $2 k$.

Consider a set of n integers and list their values $\bmod 2 k$ as $r_{1}, r_{2}, \ldots, r_{n}$. In particular, $0 \leq r_{i} \leq 2 k-1$ for each i. The numbers $\{0, \ldots, 2 k-1\}$ can be formed into $k+1$ groups

$$
\{0\},\{1,2 k-1\}, \ldots,\{k-1, k+1\},\{k\} .
$$

If $n \geq k+2$, there are $i, j, i \neq j$, so that r_{i} and r_{j} are in the same group. Then either $r_{i}+r_{j}$ or $r_{i}-r_{j}=0 \bmod 2 k$.
On the other hand, if $n \leq k+1$, we consider the set $\{0,1, \ldots, k\}$. For any two elements, neither the sum nor the difference is divisible by $2 k$.
Thus the smallest n satisfying the condition of the problem is $k+2$.

