Singapore International Mathematical Olympiad 2009 Senior Team Training

Quiz

1. Let p and q be distinct odd primes. Prove that

$$\sum_{\substack{0 < j < p/2 \\ j \text{ odd}}} \left\lfloor \frac{qj}{p} \right\rfloor \equiv \sum_{\substack{p/2 < i < p \\ i \text{ even}}} \left\lfloor \frac{qi}{p} \right\rfloor \pmod{2}.$$

In the graph of y = qx/p, Let A = (0,0), B = (p,0), C = (p,q), D = (0,q), X = (p/2,0), Y = (p/2,q/2) and Z = (p/2,q). There are p-1, which is even, lattice points on each vertical line x = k, in the interior of rectangle *ABCD*. If a_k is the number of lattice points that are below the line *AC* b_k is the the number of lattice points above the line *AC*. Then $a_k + b_k = p - 1$. Thus $a_k \equiv b_k \pmod{2}$.

Let α be the number of lattice points with even x-coordinate in the region XBCY, β be the number of lattice points with even x-coordinates in the region CYZ and γ be the number of lattice points with odd x-coordinates in the region AXY. Then α is the lhs and γ is the rhs. From the above consideration $\alpha \equiv \beta \pmod{2}$. Also note that the number of lattice points in the region CYZ with x-coordinate $\lceil p/2 \rceil + i$ is equal to the number of lattice points in the region AXY with x-coordinate $\lfloor p/2 \rfloor - i$. Moreover, $\lceil p/2 \rceil$ and $\lfloor p/2 \rfloor$ have opposite parity. Thus $\beta \equiv \gamma \pmod{2}$.

2. Let M be a point on the plane containing a triangle ABC. The lines MA, MB and MC intersect the lines BC, CA and AB at D, E and F respectively. The circumcircle of $\triangle DEF$ meets the lines BC, CA and AB respectively at D', E' and F'. Prove that AD', BE' and CF' are concurrent.

Using Ceva' Theorem, we have $\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = 1$. Also, $BD \cdot BD' = BF \cdot BF'$, $CE \cdot CE' = CD \cdot CD'$ and $AF \cdot AF' = AE \cdot AE'$. Thus $\frac{BD'}{BF'} \cdot \frac{CE'}{CD'} \cdot \frac{AF'}{AE'} = \frac{BF}{BD} \cdot \frac{CD}{CE} \cdot \frac{AE}{AF} = 1$.

Thus $\frac{BD'}{D'C} \cdot \frac{CE'}{E'A} \cdot \frac{AF'}{F'B} = 1$. By the converse of Ceva's Theorem, AD', BE' and CF' are concurrent.

3. Let a, b, c, d be nonnegative real numbers. Show that

$$\left(\frac{abc+bcd+cda+dab}{4}\right)^2 \le \left(\frac{ab+bc+cd+da+ac+bd}{6}\right)^3$$

[Remark: The proof I have is unsatisfying in many respects. You are welcome to contribute better proofs.]

First observe that the inequality to be shown is symmetric in the variables a, b, c, d and homogeneous. If d = 0, the inequality follows easily from AM-GM: $(abc)^{2/3} \leq \frac{ab+ac+bc}{3}$. Otherwise, we may assume that $a \geq b \geq c \geq d = 1$. Denote by C the number $(abc)^{1/3}$. By our assumption, $C \geq 1$.

<u>Claim.</u> The function

$$f(x) = (\frac{x+C}{2})^3 - (\frac{3x+C^3}{4})^2$$

is increasing for $x \ge C^2$.

The only proof I have of the Claim is to use differential calculus to show that $f'(x) \ge 0$ for $x \ge C^2$.

Assuming the claim, we find that for $x \ge C^2$, $f(x) \ge f(C^2) = \frac{C^3}{16}(C^3 - 3C + 2) = \frac{C^3}{16}(C - 1)(C^2 + C - 2) \ge 0$

since $C \ge 1$. By AM-GM inequality $\frac{ab+ac+bc}{3} \ge C^2$. Thus $f(\frac{ab+ac+bc}{3}) \ge 0$. Thus

$$\left(\frac{ab + ac + bc + C^3}{4}\right)^2 \le \left(\frac{ab + ac + bc + 3C}{6}\right)^3.$$

By AM-GM inequality, $3C \le a + b + c$. Hence

$$\left(\frac{ab+ac+bc+abc}{4}\right)^2 \le \left(\frac{ab+ac+bc+a+b+c}{6}\right)^3,$$

which is the inequality required (setting d = 1).

4. Let ABCDEF be a convex hexagon inscribed in a circle. Assume that AB = BC, CD = DE and EF = FA. Show that

$$\frac{BC}{BE} + \frac{DE}{DA} + \frac{FA}{FC} \ge \frac{3}{2}.$$

Consider the cyclic quadrilateral ACEF. By Ptolemy's Theorem,

$$AC \cdot EF + CE \cdot FA = AE \cdot FC.$$

Dividing by FC(AC + CE) and using the fact that EF = FA, we have

$$\frac{FA}{FC} = \frac{AE}{AC + CE}.$$

Similarly,

$$\frac{BC}{BE} = \frac{AC}{CE + AE}$$
$$\frac{DE}{DA} = \frac{CE}{AE + AC}$$

Let AC = a, CE = b and AE = c. Then

$$\frac{BC}{BE} + \frac{DE}{DA} + \frac{FA}{FC} = \frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b}.$$

By AM-HM inequality,

$$\frac{3}{\frac{1}{b+c} + \frac{1}{a+b} + \frac{1}{a+c}} \le \frac{b+c+a+b+a+c}{3}.$$

Hence

$$\frac{9}{2} \le (a+b+c)(\frac{1}{b+c} + \frac{1}{a+b} + \frac{1}{a+c}) = \frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} + 3.$$

The desired inequality follows.

5. Let k be a given positive integer. Find the smallest n in terms of k so that for any set A of n integers, there are always two elements in A whose sum or difference is divisible by 2k.

Consider a set of n integers and list their values mod 2k as r_1, r_2, \ldots, r_n . In particular, $0 \le r_i \le 2k - 1$ for each i. The numbers $\{0, \ldots, 2k - 1\}$ can be formed into k + 1 groups

$$\{0\}, \{1, 2k-1\}, \dots, \{k-1, k+1\}, \{k\}.$$

If $n \ge k+2$, there are $i, j, i \ne j$, so that r_i and r_j are in the same group. Then either $r_i + r_j$ or $r_i - r_j = 0 \mod 2k$.

On the other hand, if $n \leq k + 1$, we consider the set $\{0, 1, \ldots, k\}$. For any two elements, neither the sum nor the difference is divisible by 2k.

Thus the smallest n satisfying the condition of the problem is k + 2.