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Quiz

1. Let p and q be distinct odd primes. Prove that

∑
0<j<p/2

j odd

⌊
qj

p

⌋
≡

∑
p/2<i<p

i even

⌊
qi

p

⌋
(mod 2).

In the graph of y = qx/p, Let A = (0, 0), B = (p, 0), C = (p, q), D = (0, q),
X = (p/2, 0), Y = (p/2, q/2) and Z = (p/2, q). There are p − 1, which is
even, lattice points on each vertical line x = k, in the interior of rectangle
ABCD. If ak is the number of lattice points that are below the line AC bk
is the the number of lattice points above the line AC. Then ak + bk = p− 1.
Thus ak ≡ bk (mod 2).
Let α be the number of lattice points with even x-coordinate in the region
XBCY , β be the number of lattice points with even x-coordinates in the
region CY Z and γ be the number of lattice points with odd x-coordinates
in the region AXY . Then α is the lhs and γ is the rhs. From the above
consideration α ≡ β (mod 2). Also note that the number of lattice points
in the region CY Z with x-coordinate dp/2e + i is equal to the number of
lattice points in the region AXY with x-coordinate bp/2c − i. Moreover,
dp/2e and bp/2c have opposite parity. Thus β ≡ γ (mod 2).
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2. Let M be a point on the plane containing a triangle ABC. The lines
MA,MB and MC intersect the lines BC,CA and AB at D,E and F re-
spectively. The circumcircle of 4DEF meets the lines BC,CA and AB

respectively at D′, E′ and F ′. Prove that AD′, BE′ and CF ′ are concur-
rent.

Using Ceva’ Theorem, we have BD
DC ·

CE
EA ·

AF
FB = 1. Also, BD·BD′ = BF ·BF ′,

CE · CE′ = CD · CD′ and AF ·AF ′ = AE ·AE′. Thus
BD′

BF ′ ·
CE′

CD′ ·
AF ′

AE′ =
BF

BD
· CD
CE
· AE
AF

= 1.

Thus BD′

D′C ·
CE′

E′A ·
AF ′

F ′B = 1. By the converse of Ceva’s Theorem, AD′, BE′

and CF ′ are concurrent.
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3. Let a, b, c, d be nonnegative real numbers. Show that(abc+ bcd+ cda+ dab

4
)2 ≤ (ab+ bc+ cd+ da+ ac+ bd

6
)3
.

[Remark: The proof I have is unsatisfying in many respects. You are wel-
come to contribute better proofs.]

First observe that the inequality to be shown is symmetric in the vari-
ables a, b, c, d and homogeneous. If d = 0, the inequality follows eas-
ily from AM-GM: (abc)2/3 ≤ ab+ac+bc

3 . Otherwise, we may assume that
a ≥ b ≥ c ≥ d = 1. Denote by C the number (abc)1/3. By our assumption,
C ≥ 1.

Claim. The function

f(x) = (
x+ C

2
)3 − (

3x+ C3

4
)2

is increasing for x ≥ C2.

The only proof I have of the Claim is to use differential calculus to show
that f ′(x) ≥ 0 for x ≥ C2.

Assuming the claim, we find that for x ≥ C2,

f(x) ≥ f(C2) =
C3

16
(C3 − 3C + 2) =

C3

16
(C − 1)(C2 + C − 2) ≥ 0

since C ≥ 1. By AM-GM inequality ab+ac+bc
3 ≥ C2. Thus f(ab+ac+bc

3 ) ≥ 0.
Thus (ab+ ac+ bc+ C3

4
)2 ≤ (ab+ ac+ bc+ 3C

6
)3
.

By AM-GM inequality, 3C ≤ a+ b+ c. Hence(ab+ ac+ bc+ abc

4
)2 ≤ (ab+ ac+ bc+ a+ b+ c

6
)3
,

which is the inequality required (setting d = 1).

4. Let ABCDEF be a convex hexagon inscribed in a circle. Assume that
AB = BC, CD = DE and EF = FA. Show that

BC

BE
+
DE

DA
+
FA

FC
≥ 3

2
.

Consider the cyclic quadrilateral ACEF . By Ptolemy’s Theorem,

AC · EF + CE · FA = AE · FC.
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Dividing by FC(AC + CE) and using the fact that EF = FA, we have
FA

FC
=

AE

AC + CE
.

Similarly,
BC

BE
=

AC

CE +AE
DE

DA
=

CE

AE +AC
.

Let AC = a, CE = b and AE = c. Then
BC

BE
+
DE

DA
+
FA

FC
=

a

b+ c
+

b

a+ c
+

c

a+ b
.

By AM-HM inequality,
3

1
b+c + 1

a+b + 1
a+c

≤ b+ c+ a+ b+ a+ c

3
.

Hence
9
2
≤ (a+ b+ c)(

1
b+ c

+
1

a+ b
+

1
a+ c

) =
a

b+ c
+

b

a+ c
+

c

a+ b
+ 3.

The desired inequality follows.

5. Let k be a given positive integer. Find the smallest n in terms of k so
that for any set A of n integers, there are always two elements in A whose
sum or difference is divisible by 2k.

Consider a set of n integers and list their values mod 2k as r1, r2, . . . , rn. In
particular, 0 ≤ ri ≤ 2k − 1 for each i. The numbers {0, . . . , 2k − 1} can be
formed into k + 1 groups

{0}, {1, 2k − 1}, . . . , {k − 1, k + 1}, {k}.
If n ≥ k + 2, there are i, j, i 6= j, so that ri and rj are in the same group.
Then either ri + rj or ri − rj = 0 mod 2k.
On the other hand, if n ≤ k + 1, we consider the set {0, 1, . . . , k}. For any
two elements, neither the sum nor the difference is divisible by 2k.
Thus the smallest n satisfying the condition of the problem is k + 2.


