Singapore International Mathematical Olympiad 2009 Senior Team Training

Take Home Test Solutions

1. For any positive integer k, let $f(k)$ be the number of elements in the set $\{k+1, k+2, \ldots, 2 k\}$ whose base 2 representation has precisely three 1 s.
(1) Prove that, for each positive integer m, there exists at least one positive integer k such that $f(k)=m$.
(2) Determine all positive integers m for which there exists exactly one k with $f(k)=m$.

Let $g(n)=1$ if the binary expansion of n has exactly 3 ' 1 's and $g(n)=0$ otherwise.

$$
f(k+1)-f(k)=g(2 k+2)+g(2 k+1)-g(k+1)
$$

Since $g(2 k+2)=g(k+1), f(k+1)-f(k)$ is either 1 or 0 depending on whether $g(2 k+1)$ is 1 or 0 . Note that the binary expansions of numbers between 2^{n} and 2^{n+1} have $n+1$ digits. Thus among these numbers there are $\binom{n}{2}$ which have 3 ' 1 's in the binary representation. Thus $f\left(2^{n}\right)=\binom{n}{2}$. Since $f(1)=0$ and the image of f is \mathbb{Z}^{+}. This proves (a).

Let m be any positive integer for which there is only one k with $f(k)=m$. Then

$$
f(k+1)-f(k)=1=f(k)-f(k-1) .
$$

This means $g(2 k+1)=g(2 k-1)=1$. This means the binary expansion of k has exactly 2 ' 1 's and ends in 10 . Thus $k=2^{n}+2$ for some n. Clearly, there are infinitely many such k. From $2^{n}+3$ to 2^{n+1} there are $\binom{n}{2}$ numbers whose binary representation has exactly 3 ' 1 's. From $2^{n+1}+1$ to $2^{n+1}+4$ there is only 1 such number. Thus $f\left(2^{n}+2\right)=1+\binom{n}{2}$.
2. Determine all pairs (n, p) of positive integers such that p is prime, $n \leq 2 p$, and $(p-1)^{n}+1$ is divisible by n^{p-1}.

Clearly $(1, p)$ and $(2,2)$ are solutions and for other solutions we have $p \geq 3$. Now assume that $n \geq 2$ and $p \geq 3$. Since $(p-1)^{n}+1$ is odd and is divisible by n^{p-1}, n must be odd. Thus $n<2 p$. Let q be the smallest prime divisor of n. From $q \mid(p-1)^{n}+1$, we have

$$
(p-1)^{n} \equiv-1 \quad(\bmod q)_{1} \quad \text { and } \quad \operatorname{gcd}(q, p-1)=1
$$

But $\operatorname{gcd}(n, q-1)=1($ from the choice of $q)$, there exist integers u and v such that $u n+v(q-1)=1$, whence

$$
p-1 \equiv(p-1)^{u n}(p-1)^{v(q-1)} \equiv(-1)^{u} 1^{v} \equiv-1 \quad(\bmod q)
$$

because u must be odd. This shows $q \mid p$ and therefore $q=p$. Hence $n=p$. Now

$$
\begin{aligned}
p^{p-1} \mid & (p-1)^{p}+1 \\
& =p^{2}\left(p^{p-2}-\binom{p}{1} p^{p-3}+\cdots+\binom{p}{p-3} p-\binom{p}{p-2}+1\right)
\end{aligned}
$$

Since every term in the bracket except the last is divisible by p, we have $p-1 \leq 2$. Thus $p=3=n$. Indeed $(3,3)$ is a solution.
In conclusion, the only solutions are $(1, p),(2,2),(3,3)$.
3. Let $A D, B E$ and $C F$ be the altitudes of the triangle $A B C$. The circle with diameter $A D$ meets $A B$ at M and $A C$ at N and the line through A perpendicular to $M N$ meets $B C$ at D^{\prime}. Similar points E^{\prime} and F^{\prime} are constructed on the sides $A C$ and $A B$ respectively. Prove that $A D^{\prime}, B E^{\prime}, C F^{\prime}$ are concurrent.

Let $A D^{\prime}$ intersect $M N$ at G. Join $D N$.

Then $\triangle A N D$ is similar to $\triangle A G M$ so that $\angle B A D^{\prime}=\angle M A G=\angle D A C$ and $\angle D^{\prime} A C=\angle D A B$. Similarly, $\angle C B E^{\prime}=\angle A B E, \angle E^{\prime} B A=\angle E B C$ and $\angle A C F^{\prime}=\angle B C F, \angle F^{\prime} C B=\angle F C A$. Thus
$\frac{\sin \angle B A D^{\prime}}{\sin \angle D^{\prime} A C} \cdot \frac{\sin \angle A C F^{\prime}}{\sin \angle F^{\prime} C B} \cdot \frac{\sin \angle C B E^{\prime}}{\sin \angle E^{\prime} B A}=\frac{\sin \angle C A D}{\sin \angle D A B} \cdot \frac{\sin \angle A B E}{\sin \angle E B C} \cdot \frac{\sin \angle B C F}{\sin \angle F C A}=1$,
since the three altitudes concur at the orthocentre. Thus by Ceva's theorem, $A D^{\prime}, B E^{\prime}, C F^{\prime}$ are concurrent.
4. In an acute triangle $A B C$, the bisector of $\angle A, \angle B$ and $\angle C$ intersect the circumcircle again at points A_{1}, B_{1} and C_{1}, respectively. Let M be the point of intersection of $A B$ and $B_{1} C_{1}$, and let N be the point of intersection of $B C$ and $A_{1} B_{1}$. Prove that $M N$ passes through the incentre of $\triangle A B C$.

Join $A_{1} B, B C_{1}, N I$ and $I M$. First we have $\angle N A_{1} I=\angle B_{1} A_{1} A=\angle B_{1} B A=$ $\angle N B I$. That means $N A_{1} B I$ are concyclic. Similarly, $\angle M C_{1} I=\angle M B I$ so that $M C_{1} B I$ are concyclic. Thus $\angle M I B=180^{\circ}-\angle B_{1} C_{1} B=N A_{1} B$. Therefore, $\angle M I B+\angle B I N=180^{\circ}$. In other words, N, I, M are collinear.
5. If x_{1}, \ldots, x_{n} are positive real numbers, where $n \geq 5$, show that

$$
\begin{aligned}
\frac{x_{1}^{3}}{x_{1}^{3}+x_{2} x_{3} x_{4}} & +\frac{x_{2}^{3}}{x_{2}^{3}+x_{3} x_{4} x_{5}}+\cdots+ \\
& +\frac{x_{n-1}^{3}}{x_{n-1}^{3}+x_{n} x_{1} x_{2}}+\frac{x_{n}^{3}}{x_{n}^{3}+x_{1} x_{2} x_{3}} \leq n-1
\end{aligned}
$$

Let $y_{1}=x_{2} x_{3} x_{4} / x_{1}^{3}, \ldots, y_{n}=x_{1} x_{2} x_{3} / x_{n}^{3}$. Then $y_{1} \ldots y_{n}=1$.
Claim. If $m \geq 2$ and u_{1}, \ldots, u_{m} are positive numbers with $u_{1} \cdots u_{m}=1$, then

$$
\sum_{k=1}^{m} \frac{u_{k}}{1+u_{k}} \geq 1
$$

For $m=2$, the claim is clear. Suppose that the claim holds for some $m \geq 2$.

4
If $u_{1}, \ldots, u_{m}, u_{m+1}$ are positive numbers with product 1 , then

$$
\sum_{k=1}^{m-1} \frac{u_{k}}{1+u_{k}}+\frac{u_{m} u_{m+1}}{1+u_{m} u_{m+1}} \geq 1
$$

Since

$$
\frac{u_{m}}{1+u_{m}}+\frac{u_{m+1}}{1+u_{m+1}} \geq \frac{u_{m} u_{m+1}}{1+u_{m} u_{m+1}},
$$

the claim follows by induction.

From the claim, we see that

$$
\sum_{k=1}^{n} \frac{y_{k}}{1+y_{k}} \geq 1 .
$$

This is equivalent to

$$
\sum_{k=1}^{n} \frac{1}{1+y_{k}} \leq n-1,
$$

which is equivalent to the inequality to be shown.
6. Let a, b, c be the three sides of a triangle. Prove that

$$
\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c} \geq 3 .
$$

By Chebyshev's inequality,

$$
\begin{aligned}
\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c} & \geq \frac{a+b+c}{3}\left[\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\right] \\
& \geq \frac{a+b+c}{3}\left[\frac{9}{a+b+c}\right]
\end{aligned}
$$

7. Arrange distinct real numbers a_{1}, \ldots, a_{n} in a circular pattern in the given order in the clockwise direction. Assume that $a_{1}+\cdots+a_{n}=0$. Show that there exists an integer $k, 1 \leq k \leq n$, so that the sum of any $i(1 \leq i \leq n)$ consecutive terms in the clockwise direction beginning with a_{k} is nonnegative.

Let $S_{j}=a_{1}+\cdots+a_{j}, 1 \leq j \leq n$. If $S_{j} \geq 0$ for all j, then $k=1$ satisfies the requirements. Otherwise, pick k so that

$$
S_{k-1}=\min \left\{S_{1}, S_{2}, \ldots, S_{n}\right\}<0 .
$$

(If the minimum occurs at S_{n}, take k to be 1.) If $k \leq j \leq n$, then

$$
a_{k}+\cdots+a_{j}=S_{j}-S_{k-1}>0 .
$$

If $1 \leq j \leq k-1$, then, since $S_{n}=0$ by assumption,

$$
a_{k}+\cdots+a_{n}+a_{1}+\cdots+a_{j}=S_{n}-S_{k-1}+S_{j}=S_{j}-S_{k-1} \geq 0
$$

8. In a tournament with n players, every pair of players play each other exactly once, and each match results in a win for one of the players. A player, say Player A, is awarded a Grand Prize if for any other player B, either A beats B or there is another player C so that A beats C and C beats B. Show that the tournament must have at least one Grand Prize winner. If there is exactly one Grand Prize winner, show that the winner has beaten every other player.

There is a player with the most number of wins. Let's say it's player n and she has m wins. We may assume that player n has beaten players $1, \ldots, m$ and lost to players $m+1, \ldots, n-1$. Consider player $k, m+1 \leq k \leq n-1$. She has beaten player n and she has at most m wins. So she must have lost to at least one of the players $1, \ldots, m$, whom player n beats. This shows that player n is a Grand Prize winner.
Suppose that player n is a Grand Prize Winner who has beaten players $1, \ldots, m$ and lost to players $m+1, \ldots, n-1$. Consider the mini-tournament among players $m+1, \ldots, n-1$. By the first part, there must be a miniGrand Prize winner. Let it be player $m+1$. This means that for each player $k, m+2 \leq k \leq n$, player $m+1$ has beaten player k or beaten another player who has beaten player k. For each player $k, 1 \leq k \leq m$, player $m+1$ has beaten player n, who has beaten player k. Also player $m+1$ has beaten player n. Therefore, player $m+1$ is also a Grand Prize winner. So if there is only one Grand Prize winner, she must have beaten all other players.
9. Let $A B C$ be an acute triangle with $B C>C A$. Denote its circumcenter and orthocenter by O and H respectively. Extend $C H$ to meet $A B$ at F. The line through F perpendicular to $O F$ meets $C A$ at P. Show that $\angle F H P=\angle B A C$.

We first recall the Butterfly Theorem:
Let M be the midpoint of a chord $A B$ of a given circle. Let C, D, E, F be points on the circle so that the chords $C D$ and $E F$ pass through M. Let P be the intersection of $A B$ with $D F$ and Q be the intersection of $A B$ with $C E$. Then $P M=M Q$.

Construct chord $F G$ parallel to $A B$. Since M is the midpoint of $A B$, the triangle $G M E$ is isosceles. Thus

$$
\angle P M G=\angle M G E=\angle M E G=\angle F E G=\angle F D G=\angle P D G
$$

Hence the points P, M, D, G are concyclic. Therefore,

$$
\angle P G M=\angle P D M=\angle F D M=\angle F E C=\angle M E Q
$$

Since $\angle P M G=\angle Q M E$ and $M G=M E$ as well, the triangles $P M G$ and $Q M E$ are congruent. So $P M=M Q$.

Now we return to the proof of the exercise. Extend $C F$ to meet the circumcircle at D. Extend $F P$ to a chord of the circle and let this chord meet $D B$ at Q. Since $O F$ is perpendicular to the chord, F is the midpoint of the chord. By the Butterfly Theorem, $P F=F Q$. Since H is the orthocenter, $B H \perp A C$. Hence
$\angle D H B=\angle F H B=90^{\circ}-\angle H B F=90^{\circ}-\angle H B A=\angle B A C=\angle B D C=\angle B D H$.
Thus triangle $B H D$ is isosceles. Since $B F \perp H D, F$ must be the midpoint of $H D$. So $F H=H D$. Obviously, $\angle P F H=\angle Q F D$. So the triangles $P H F$ and $Q D F$ are congruent. In particular, $\angle P H F=\angle F D Q=\angle C D B=$ $\angle B A C$.
10. Let $A B C D$ be a cyclic quadrilateral and let points K, L, M, N be the midpoints of the sides $A B, B C, C D$ and $D A$ respectively. Show that the
orthocenters of the four triangles $A K N, B K L, C L M$ and $D M N$ are the vertices of a parallelogram.

Let O be the center of the circumcircle of $A B C D$. Then $O K, O L, O M, O N$ are perpendicular to the chords $A B, B C, C D$ and $D A$ respectively. Let H be the orthocenter of triangle $A N K$. Then $N H$ is perpendicular to $A K$ and hence parallel to $O K$. Similarly, $K H$ is parallel to $O N$. In the same manner, the orthocenter J of triangle $D N M$ is the fourth vertex of the parallelogram $N O M J$. It follows easily that $H J$ is parallel to $K M$. Similarly, if G and I are the orthocenters of triangles $B L K$ and $C L M$ respectively, then $G I$ is parallel to $K M$. Also, $H G$ and $J I$ are both parallel to $N L$. Thus $H G I J$ is a parallelogram.

