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Take Home Test Solutions

1. For any positive integer k, let f(k) be the number of elements in the set
{k + 1, k + 2, . . . , 2k} whose base 2 representation has precisely three 1s.

(1) Prove that, for each positive integer m, there exists at least one
positive integer k such that f(k) = m.

(2) Determine all positive integers m for which there exists exactly one
k with f(k) = m.

Let g(n) = 1 if the binary expansion of n has exactly 3 ‘1’s and g(n) = 0
otherwise.

f(k + 1)− f(k) = g(2k + 2) + g(2k + 1)− g(k + 1)

Since g(2k + 2) = g(k + 1), f(k + 1) − f(k) is either 1 or 0 depending on
whether g(2k + 1) is 1 or 0. Note that the binary expansions of numbers
between 2n and 2n+1 have n + 1 digits. Thus among these numbers there
are

(
n
2

)
which have 3 ‘1’s in the binary representation. Thus f(2n) =

(
n
2

)
.

Since f(1) = 0 and the image of f is Z+. This proves (a).

Let m be any positive integer for which there is only one k with f(k) = m.
Then

f(k + 1)− f(k) = 1 = f(k)− f(k − 1).

This means g(2k + 1) = g(2k − 1) = 1. This means the binary expansion of
k has exactly 2 ‘1’s and ends in 10. Thus k = 2n + 2 for some n. Clearly,
there are infinitely many such k. From 2n +3 to 2n+1 there are

(
n
2

)
numbers

whose binary representation has exactly 3 ‘1’s. From 2n+1 + 1 to 2n+1 + 4
there is only 1 such number. Thus f(2n + 2) = 1 +

(
n
2

)
.

2. Determine all pairs (n, p) of positive integers such that p is prime, n ≤ 2p,
and (p− 1)n + 1 is divisible by np−1.

Clearly (1, p) and (2, 2) are solutions and for other solutions we have p ≥ 3.
Now assume that n ≥ 2 and p ≥ 3. Since (p− 1)n + 1 is odd and is divisible
by np−1, n must be odd. Thus n < 2p. Let q be the smallest prime divisor
of n. From q | (p− 1)n + 1, we have

(p− 1)n ≡ −1 (mod q) and gcd(q, p− 1) = 1.
1
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But gcd(n, q − 1) = 1 (from the choice of q), there exist integers u and v

such that un + v(q − 1) = 1, whence

p− 1 ≡ (p− 1)un(p− 1)v(q−1) ≡ (−1)u1v ≡ −1 (mod q),

because u must be odd. This shows q | p and therefore q = p. Hence n = p.
Now

pp−1 | (p− 1)p + 1

= p2

(
pp−2 −

(
p

1

)
pp−3 + · · ·+

(
p

p− 3

)
p−

(
p

p− 2

)
+ 1
)

.

Since every term in the bracket except the last is divisible by p, we have
p− 1 ≤ 2. Thus p = 3 = n. Indeed (3, 3) is a solution.
In conclusion, the only solutions are (1, p), (2, 2), (3, 3).

3. Let AD,BE and CF be the altitudes of the triangle ABC. The circle
with diameter AD meets AB at M and AC at N and the line through A

perpendicular to MN meets BC at D′. Similar points E′ and F ′ are con-
structed on the sides AC and AB respectively. Prove that AD′, BE′, CF ′

are concurrent.

Let AD′ intersect MN at G. Join DN .

Then 4AND is similar to 4AGM so that ∠BAD′ = ∠MAG = ∠DAC

and ∠D′AC = ∠DAB. Similarly, ∠CBE′ = ∠ABE, ∠E′BA = ∠EBC and
∠ACF ′ = ∠BCF , ∠F ′CB = ∠FCA. Thus

sin ∠BAD′

sin ∠D′AC
· sin ∠ACF ′

sin ∠F ′CB
·sin ∠CBE′

sin ∠E′BA
=

sin ∠CAD

sin ∠DAB
· sin ∠ABE

sin ∠EBC
·sin ∠BCF

sin ∠FCA
= 1,

since the three altitudes concur at the orthocentre. Thus by Ceva’s theorem,
AD′, BE′, CF ′ are concurrent.
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4. In an acute triangle ABC, the bisector of ∠A, ∠B and ∠C intersect the
circumcircle again at points A1, B1 and C1, respectively. Let M be the point
of intersection of AB and B1C1, and let N be the point of intersection of
BC and A1B1. Prove that MN passes through the incentre of 4ABC.

Join A1B, BC1, NI and IM . First we have ∠NA1I = ∠B1A1A = ∠B1BA =
∠NBI. That means NA1BI are concyclic. Similarly, ∠MC1I = ∠MBI

so that MC1BI are concyclic. Thus ∠MIB = 180◦ − ∠B1C1B = NA1B.
Therefore, ∠MIB + ∠BIN = 180◦. In other words, N, I,M are collinear.

5. If x1, . . . , xn are positive real numbers, where n ≥ 5, show that

x3
1

x3
1 + x2x3x4

+
x3

2

x3
2 + x3x4x5

+ · · ·+

+
x3

n−1

x3
n−1 + xnx1x2

+
x3

n

x3
n + x1x2x3

≤ n− 1.

Let y1 = x2x3x4/x3
1, . . . , yn = x1x2x3/x3

n. Then y1 . . . yn = 1.

Claim. If m ≥ 2 and u1, . . . , um are positive numbers with u1 · · ·um = 1,
then

m∑
k=1

uk

1 + uk
≥ 1.

For m = 2, the claim is clear. Suppose that the claim holds for some m ≥ 2.
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If u1, . . . , um, um+1 are positive numbers with product 1, then
m−1∑
k=1

uk

1 + uk
+

umum+1

1 + umum+1
≥ 1.

Since
um

1 + um
+

um+1

1 + um+1
≥ umum+1

1 + umum+1
,

the claim follows by induction.

From the claim, we see that
n∑

k=1

yk

1 + yk
≥ 1.

This is equivalent to
n∑

k=1

1
1 + yk

≤ n− 1,

which is equivalent to the inequality to be shown.

6. Let a, b, c be the three sides of a triangle. Prove that
a

b + c− a
+

b

c + a− b
+

c

a + b− c
≥ 3.

By Chebyshev’s inequality,
a

b + c− a
+

b

c + a− b
+

c

a + b− c
≥ a + b + c

3
[ 1
b + c− a

+
1

c + a− b
+

1
a + b− c

]
≥ a + b + c

3
[ 9
a + b + c

]

7. Arrange distinct real numbers a1, . . . , an in a circular pattern in the given
order in the clockwise direction. Assume that a1 + · · ·+ an = 0. Show that
there exists an integer k, 1 ≤ k ≤ n, so that the sum of any i (1 ≤ i ≤ n)
consecutive terms in the clockwise direction beginning with ak is nonnega-
tive.

Let Sj = a1 + · · · + aj , 1 ≤ j ≤ n. If Sj ≥ 0 for all j, then k = 1 satisfies
the requirements. Otherwise, pick k so that

Sk−1 = min{S1, S2, . . . , Sn} < 0.

(If the minimum occurs at Sn, take k to be 1.) If k ≤ j ≤ n, then

ak + · · ·+ aj = Sj − Sk−1 > 0.
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If 1 ≤ j ≤ k − 1, then, since Sn = 0 by assumption,

ak + · · ·+ an + a1 + · · ·+ aj = Sn − Sk−1 + Sj = Sj − Sk−1 ≥ 0.

8. In a tournament with n players, every pair of players play each other
exactly once, and each match results in a win for one of the players. A
player, say Player A, is awarded a Grand Prize if for any other player B,
either A beats B or there is another player C so that A beats C and C beats
B. Show that the tournament must have at least one Grand Prize winner.
If there is exactly one Grand Prize winner, show that the winner has beaten
every other player.

There is a player with the most number of wins. Let’s say it’s player n and
she has m wins. We may assume that player n has beaten players 1, . . . ,m

and lost to players m + 1, . . . , n− 1. Consider player k, m + 1 ≤ k ≤ n− 1.
She has beaten player n and she has at most m wins. So she must have lost
to at least one of the players 1, . . . ,m, whom player n beats. This shows
that player n is a Grand Prize winner.
Suppose that player n is a Grand Prize Winner who has beaten players
1, . . . ,m and lost to players m+ 1, . . . , n−1. Consider the mini-tournament
among players m + 1, . . . , n − 1. By the first part, there must be a mini-
Grand Prize winner. Let it be player m+1. This means that for each player
k, m+2 ≤ k ≤ n, player m+1 has beaten player k or beaten another player
who has beaten player k. For each player k, 1 ≤ k ≤ m, player m + 1 has
beaten player n, who has beaten player k. Also player m + 1 has beaten
player n. Therefore, player m + 1 is also a Grand Prize winner. So if there
is only one Grand Prize winner, she must have beaten all other players.

9. Let ABC be an acute triangle with BC > CA. Denote its circumcenter
and orthocenter by O and H respectively. Extend CH to meet AB at
F . The line through F perpendicular to OF meets CA at P . Show that
∠FHP = ∠BAC.
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We first recall the Butterfly Theorem:

Let M be the midpoint of a chord AB of a given circle. Let C, D, E, F be
points on the circle so that the chords CD and EF pass through M . Let P

be the intersection of AB with DF and Q be the intersection of AB with
CE. Then PM = MQ.

Construct chord FG parallel to AB. Since M is the midpoint of AB, the
triangle GME is isosceles. Thus

∠PMG = ∠MGE = ∠MEG = ∠FEG = ∠FDG = ∠PDG.

Hence the points P,M, D, G are concyclic. Therefore,

∠PGM = ∠PDM = ∠FDM = ∠FEC = ∠MEQ.

Since ∠PMG = ∠QME and MG = ME as well, the triangles PMG and
QME are congruent. So PM = MQ.

Now we return to the proof of the exercise. Extend CF to meet the cir-
cumcircle at D. Extend FP to a chord of the circle and let this chord meet
DB at Q. Since OF is perpendicular to the chord, F is the midpoint of the
chord. By the Butterfly Theorem, PF = FQ. Since H is the orthocenter,
BH ⊥ AC. Hence

∠DHB = ∠FHB = 90◦−∠HBF = 90◦−∠HBA = ∠BAC = ∠BDC = ∠BDH.

Thus triangle BHD is isosceles. Since BF ⊥ HD, F must be the midpoint of
HD. So FH = HD. Obviously, ∠PFH = ∠QFD. So the triangles PHF

and QDF are congruent. In particular, ∠PHF = ∠FDQ = ∠CDB =
∠BAC.

10. Let ABCD be a cyclic quadrilateral and let points K, L,M,N be the
midpoints of the sides AB, BC, CD and DA respectively. Show that the
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orthocenters of the four triangles AKN , BKL, CLM and DMN are the
vertices of a parallelogram.

Let O be the center of the circumcircle of ABCD. Then OK,OL, OM, ON

are perpendicular to the chords AB, BC, CD and DA respectively. Let H

be the orthocenter of triangle ANK. Then NH is perpendicular to AK and
hence parallel to OK. Similarly, KH is parallel to ON . In the same manner,
the orthocenter J of triangle DNM is the fourth vertex of the parallelogram
NOMJ . It follows easily that HJ is parallel to KM . Similarly, if G and
I are the orthocenters of triangles BLK and CLM respectively, then GI is
parallel to KM . Also, HG and JI are both parallel to NL. Thus HGIJ is
a parallelogram.


