45th INTERNATIONAL MATHEMATICAL OLYMPIAD

IMO 2004 HELLAS

 

Day:

 2

Country Code:

 66

Country Abbr.:

SIN

Language:

 English

 

                 

 

 

 

Problem 4. Let  be an integer. Let  be positive real numbers such that

.

Show that   are side lengths of a triangle for all  with  .

 

 

Problem 5. In a convex quadrilateral  the diagonal  bisects neither the angle  not the angle .

The point  lies inside  and satisfies

 

Prove that  is a cyclic quadrilateral if and only if .

 

 

Problem 6. We call a positive integer alternating if every two consecutive digits in its decimal representation

are of different parity.  Find all positive integers  such that  has a multiple which is alternating.

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                   Duration of exam: 4 hours 30 minutes.

                                                                                                                                                   Each problem is worth 7 marks.