42nd International Mathematical Olympiad

Washington DC, United States of America, July 2001

1. Let $A B C$ be an acute-angled triangle with circumcentre O. Let P on $B C$ be the foot of the altitude from A.

Suppose that $\angle B C A \geq \angle A B C+30^{\circ}$.
Prove that $\angle C A B+\angle C O P<90^{\circ}$.

Essentially, the trick is to convert this to a trigonometry inequality. There are many ways to do it, we present the simplest one. Most of the other solutions involve proofing $P B \geq 3 P C$ from the desired result follows readily.

Soln. Let R be the circumradius. Then

$$
\begin{aligned}
C P & =A C \cos C=2 R \sin B \cos C \\
& =R(\sin (B+C)-\sin (C-B)) \leq R(1-\sin (C-B)) \\
& \leq R\left(1-\sin 30^{\circ}\right)=R / 2
\end{aligned}
$$

So, $O P>O C-P C \geq P C$, and whence $\angle P C O>\angle P O C$. The desired result then follows from the fact that $\angle P C O+\angle C A B=90^{\circ}$.

Second soln. First we prove that $P B \geq 3 P C$. We have $P B=A P \cot B, P C=A P \cot C$. Therefore $P B \geq 3 P C$ if and only if $\tan C \geq 3 \tan B$. Since $C \geq B+30^{\circ}$, and C is acute, we have $\tan C \geq \tan \left(B+30^{\circ}\right)$. Thus

$$
\begin{aligned}
\tan C-3 \tan B & \geq \tan \left(B+30^{\circ}\right)-3 \tan B \\
& =\frac{\tan B+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}} \tan B}-3 \tan B \\
& =\frac{3}{\sqrt{3}-\tan B}\left(\tan B-\frac{1}{\sqrt{3}}\right)^{2} \geq 0
\end{aligned}
$$

since $B<60^{\circ}$. Thus $P B \geq 3 P C$ and whence $P C \leq P M$ where M is the midpoint of $B C$. This, together with the fact that $O P$ is the hypothenuse of the right-angled triangle $O P M$, implies $O P>P M \geq P C$.
2. Prove that

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1
$$

for all positive real numbers a, b and c.
Soln. Note that $f(x)=\frac{1}{\sqrt{x}}$ is convex for positive x. Recall weighted Jensen's inequality:-

$$
a f(x)+b f(y)+c f(z) \geq(a+b+c) f(a x+b y+c z)
$$

Apply this to get

$$
\text { LHS } \geq \sqrt{\frac{(a+b+c)^{3}}{a^{3}+b^{3}+c^{3}+24 a b c}} \geq 1
$$

The last step follows because by the AM-GM inequality, we have

$$
(a+b+c)^{3} \geq a^{3}+b^{3}+c^{3}+24 a b c
$$

Second soln. By Cauchy-Schwarz Inequality we have

$$
\text { LHS } \times\left(a \sqrt{a^{2}+8 b c}+b \sqrt{b^{2}+8 a c}+c \sqrt{c^{2}+8 a b}\right) \geq(a+b+c)^{2}
$$

and

$$
\begin{aligned}
\left(a \sqrt{a^{2}+8 b c}\right. & \left.+b \sqrt{b^{2}+8 a c}+c \sqrt{c^{2}+8 a b}\right) \\
& =\sqrt{a} \sqrt{a^{3}+8 a b c}+\sqrt{b} \sqrt{b^{3}+8 a b c}+\sqrt{c} \sqrt{c^{3}+8 a b c} \\
& \leq \sqrt{a+b+c} \sqrt{a^{3}+b^{3}+c^{3}+24 a b c} \\
& \leq(a+b+c)^{2}
\end{aligned}
$$

The inequality thus follows.

Third soln. Let $a b c=1$. Then divide numerator and denominator by a in the first term, b in second, and c in the third and then substitute $x=1 / a^{3}, y=1 / b^{3}, z=1 / c^{3}$ with $x y z=1$. The left hand side becomes.

$$
\frac{1}{\sqrt{1+8 x}}+\frac{1}{\sqrt{1+8 y}}+\frac{1}{\sqrt{1+8 z}}
$$

Let the denominators be u, v and w, respectively. Then the given inequality is equivalent to

$$
(u v+u w+v w) \geq u v w
$$

with u, v, w all positive. Upon squaring both sides, the inequality is equivalent to

$$
1+4(x+y+z)+u v w(u+v+w) \geq 256
$$

This follows from $x+y+z \geq 3$, uvw $(u+v+w) \geq 3(u v w)^{4 / 3}=3[(1+8 x)(1+8 y)(1+8 z)]^{2 / 3} \geq$ 243.

Fourth soln. Without loss of generality, we can assume that $a \geq b \geq c$. Let $A=$ $\sqrt{a^{2}+b^{2}+c^{2}+6 b c}, B=\sqrt{a^{2}+b^{2}+c^{2}+6 a c}, C=\sqrt{a^{2}+b^{2}+c^{2}+6 a b}$. Then $A \leq B \leq$ C. By squaring both sides, simplify and the using AM-GM, we have

$$
A+B+C \leq 3(a+b+c)
$$

and

$$
\sqrt{a^{2}+8 b c} \leq A, \quad \sqrt{b^{2}+8 a c} \leq B, \quad \sqrt{c^{2}+8 a b} \leq C
$$

Thus we have

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 a c}} \frac{c}{\sqrt{c^{2}+8 a b}} \geq \frac{a}{A}+\frac{b}{B}+\frac{c}{C}
$$

and by Chebyschev's inequality, we have

$$
\left(\frac{a}{A}+\frac{b}{B}+\frac{c}{-}\right)(A+B+C) \geq 3(a+b+c)
$$

Thus

$$
\frac{a}{A}+\frac{b}{B}+\frac{c}{C} \geq \frac{3(a+b+c)}{A+B+C} \geq 1
$$

Fifth soln. (official solution.) First we shall prove that

$$
\frac{a}{\sqrt{a^{2}+8 b c}} \geq \frac{a^{4 / 3}}{a^{4 / 3}+b^{4 / 3}+c^{4 / 3}}
$$

or equivalently, that

$$
\left(a^{4 / 3}+b^{4 / 3}+c^{4 / 3}\right)^{2} \geq a^{2 / 3}\left(a^{2}+8 b c\right)
$$

or equivalently, that

$$
b^{4 / 3}+c^{4 / 3}+2 a^{4 / 3} b^{4 / 3}+2 a^{4 / 3} c^{4 / 3}+2 b^{4 / 3} c^{4 / 3} \geq 8 a^{2 / 3} b c
$$

The last inequality follows from the AM-GM inequality. Similarly, we have

$$
\frac{b}{\sqrt{b^{2}+8 a c}} \geq \frac{b^{4 / 3}}{a^{4 / 3}+b^{4 / 3}+c^{4 / 3}}, \quad \frac{c}{\sqrt{c^{2}+8 a b}} \geq \frac{c^{4 / 3}}{a^{4 / 3}+b^{4 / 3}+c^{4 / 3}}
$$

The result then follows by adding these three inequalities.
3. Twenty-one girls and twenty-one boys took part in a mathematical contest.

Each contestant solved at most six problems.

For each girl and each boy, at least one problem was solved by both of them.
Prove that there was a problem that was solved by at least three girls and at least three boys.

Note. One useful way to investigate this problem is to form an incidence matrix. Let $B_{1}, B_{2}, \ldots, B_{21}$ be the boys and G_{1}, \ldots, G_{21} be the girls and P_{1}, \ldots, P_{n} be the problems. Set up an incidence matrix with the columns indexed by the problems and the rows indexed by the students. The entry at $\left(S, P_{i}\right)$ is 1 if S solves P_{i} and 0 otherwise. We present two solutions based on this incidence matrix.

Soln. Let b_{i} be the number boys who solve P_{i} and g_{i} be the number of girls who wolve P_{i}. Then the number of ones in every row is at most 6 . Thus $\sum_{i=1}^{n} b_{i} \leq 6|B|$ and $\sum_{i=1}^{n} g_{i} \leq 6|G|$.

In this matrix the rows B_{i} and G_{j} have at least a pair of ones in the same column because every boy and every girl solve a common problem. Call such a pair of ones a one-pair. Thus the number of one-pairs is at least 21^{2}. However, counting by the columns, the number of one-pairs is $\sum b_{i} g_{i}$. Thus we have

$$
\sum g_{i} b_{i} \geq 21^{2}
$$

Now suppose that the conclusion is false. Then $b_{i} \geq 3$ implies $g_{i} \leq 2$ and vice versa. Let P_{G} be the set of problems, each of which is solved by at least 3 girls and at most 2 boys, P_{B} be the set of problems, each solved by at least 3 boys and at most 2 girls and P_{X} be the set of problems, each of which is solved by at most 2 boys and at most 2 girls. Thus

$$
\sum b_{i} g_{i}=\sum_{P_{i} \in P_{B}} b_{i} g_{i}+\sum_{P_{i} \in P_{G} \cup P_{X}} b_{i} g_{i} \leq 2 \sum_{P_{i} \in P_{B}} b_{i}+2 \sum_{P_{i} \in P_{G} \cup P_{X}} g_{i} .
$$

Now for any girl G_{i}, consider the matrix M_{i} with whose columns correspond to problems solved by G_{i} and whose rows are all the boys. Then in this matrix, every row has at least a one. Thus there are at least 21 ones in this matrix. By the pigeonhole principle, there is a column, say P_{j} with at least 4 ones. Thus each girl solves at least one problem in P_{B}. Hence $\sum_{P_{i} \in P_{B}} g_{i} \geq|G|$ or equivalently, $\sum_{P_{i} \in P_{G} \cup P_{X}} g_{i} \leq 5|G|$. Similarly, $\sum_{P_{i} \in P_{B}} b_{i} \leq \sum_{P_{i} \in P_{B} \cup P_{X}} b_{i} \leq 5|B|$. Thus we have

$$
21^{2} \leq \sum b_{i} g_{i} \leq 10(|G|+|B|)=420
$$

a contradiction.

Second soln. With the same notation as in the first solution, divide the incidence matrix M into two part: M_{B} which is formed by the columns in $P_{B} \cup P_{X}$ and M_{G} which is formed by the columns in P_{G}. The matrix M has 441 one-pairs. Thus one of these two
submatrices, say M_{B}, has at least 221 one-pairs. (The case for M_{G} foolows by symmetry.) Thus one of the girls, say G_{1}, contributes at least 11 one-pairs in M_{B}. Since each one in row G_{1} contributes at most 2 one-pairs in M_{B}, there are 6 ones in row G_{1} in M_{B}. This means the row G_{1} in M_{G} does not have any ones. Thus G_{1} contributes at most 12 one-pairs in M. But G_{1} should contribute at least 21 one-pairs and we have a contridiction.

Third soln. Suppose on the contrary that no problem was solved by at least three girls and at least three boys. With P_{G}, P_{B}, P_{X} defined as in the first solution, we arrange the problems as shown in the figure.

Consider any girl G_{i}. She contributes at least 21 one-pairs. As in the first solution, she solves at least 1 problem in P_{B} and at most 5 problems in $P_{B} \cup P_{X}$. (Since there are 21 girls, there must be at least $\left\lceil\frac{21}{2}\right\rceil=11$ questions in P_{B}. By a similar argument using the boys, there must be at least 11 questions in P_{G} as well. We don't need this in this solution. But this fact is used in the third solution and is obtained in a different way there.) Thus the number of ones in Region 3 is at least 21. Similarly, the number of ones in Region 2 is at least 21. The girl G_{i} contributes at least 21 ones in Regions 1 and 2 since she is associated with 21 one-pairs. At most 10 of these ones are in Region 2 and therefore at least 11 are in Region 1. So the girls contribute $21 \times 11=231$ ones in Region 1, counting repetition. Each problem in P_{G} is solved by at most 2 girls. Thus the total number of ones in Region 1 (without repetition) is at least $\lceil 231 / 2\rceil=116$. Likewise, the total number of ones in Region 4 is at least 116. So the total number of ones in the matrix is at least $116+116+21+21=274$ contradicting the fact that the total number of ones is at most $42 \times 6=252$.

Fourth soln. Suppose each problem P_{i} is solved by g_{i} girls and b_{i} boys. Then $\sum g_{i} b_{i} \geq$ $21^{2}=441$ since each boy and each girl solved a common problem. We assume that the conclusion is false, i.e. $\min \left\{g_{i}, b_{i}\right\} \leq 2$. We also assume that each problem is solved by at least one boy and at least one girl. So

$$
g_{i}+b_{i} \geq \frac{g_{i} b_{i}}{2}+1.5 \quad \text { and } \quad \sum_{i=1}^{n} g_{i}+b_{i} \geq 220.5+1.5 n
$$

Since each boy and each girl solved at most 6 problems, we have $\sum g_{i}+b_{i} \leq 6 \times 21 \times 2=252$. From these we have $n \leq 21$.

Now consider a 21×21 grid, with one side representing girls, the other boys. Each cell in the grid is filled with the problems solved by both the corresponding boy and girl. There are at most 6 problems in each row and each column and each cell must contain at least one problem. In each row R_{i} there is problem P_{i} that appears at least three times. Similarly, each column C_{j} has such a problem P_{j}^{\prime}. If $P_{i}=P_{j}^{\prime}$ for some i, j, then this problem is solved by three boys and three girls. So we assume that $\left\{P_{i}\right\}$ and $\left\{P^{\prime} j\right\}$ are disjoint. Also if there exist i, j, k such that $P_{i}=P_{j}=P_{k}$, the this problem is solved by three girls and three boys. So the set $\left\{P_{i}\right\}$ contains at least 11 problems. Similarly, the set $\left\{P_{j}^{\prime}\right\}$ contains at least 11 problems. Thus there are at least 22 problems, a contradiction.
4. Let n be an odd integer greater than 1 , and let $k_{1}, k_{2}, \ldots, k_{n}$ be given integers. For each of the n ! permutations $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $1,2, \ldots, n$, let

$$
S(a)=\sum_{i=1}^{n} k_{i} a_{i}
$$

Prove that there are two permutations b and $c, b \neq c$, such that $n!$ is a divisor of $S(b)-S(c)$.

Soln. Official solution. This is the standard double counting argument. Compute the sum $\sum S(a)$, over all permutations. For each $i=1,2, \ldots, n$, the term $k_{j} i, j=1,2, \ldots, n$, appears $(n-1)!$ times. Thus its contribution to $\sum S(a)$ is $(n-1)!k_{j} i$. Thus

$$
\begin{equation*}
\sum S(a)=(n-1)!\sum_{i} i \sum_{j} k_{j}=\frac{(n+1)!}{2} \sum_{j} k_{j} \tag{*}
\end{equation*}
$$

Now suppose that the conclusion is false. Then the set $\{S(a)\}$ is a complete set of residues $\bmod n!$. Thus

$$
\sum S(a) \equiv 1+2+\cdots+n!=\frac{(n!+1) n!}{2} \equiv \frac{n!}{2} \not \equiv 0 \quad(\bmod n!)
$$

But from $(*)$, we have $\sum S(a)=n![(n+1) / 2] \sum k_{j} \equiv 0 \quad(\bmod n!) .($ Note $(n+1) / 2$ is an integer as n is odd.) Thus we have a contradiction.
5. In a triangle $A B C$, let $A P$ bisect $\angle B A C$, with P on $B C$, and let $B Q$ bisect $\angle A B C$, with Q on $C A$.

It is known that $\angle B A C=60^{\circ}$ and that $A B+B P=A Q+Q B$.
What are the possible angles of triangle $A B C$?

Soln. Extend $A B$ to X such that $B X=B P$. Similarly, let Y be the point on $A C$ (extended if necessary) on the opposite side of Q as A such that $B Q=Q Y$. Since
$A B+B P=A Q+Q B$, this implies that $A X=A Y$ by construction, and hence $\triangle A X Y$ is equilateral with $A P$ being the perpendicular bisector of $X Y$.

We consider first the case where Y does not coincide with C and lies on $A C$ extended (as in the figure). Let $\angle A B Q=\angle C B Q=x$. Then since $B X=B P, \angle B X P=\angle B P X=x$. Also, $\angle B Q C=60^{\circ}+x$ and $B Q=Q Y$ imply that $\angle Q B Y=\angle Q Y B=60^{\circ}-\frac{x}{2}$, so $\angle P B Y=60^{\circ}-\frac{3 x}{2}$. Since $A P$ is the perpendicular bisector of $X Y, \angle P X Y=\angle P Y X$, so that $\angle P Y C=\angle P X B=x$. Thus, $\angle P Y B=\angle Q Y B-x=60^{\circ}-\frac{3 x}{2}$. Hence $\angle P B Y=$ $\angle P Y B$ and $P B=P Y=P X$, which implies that $\triangle P B X$ is equilateral and $x=60^{\circ}$. However, this is a degenerate case since $\angle B A C=60^{\circ}$ and $\angle A B C=2 x=120^{\circ}$. The case where Y does not coincide with C and lies in the interior of $A C$ is similar, except that this time $\angle P B Y=\angle P Y B=\frac{3 x}{2}-60^{\circ}$. We once again reach the conclusion that $\triangle P B X$ is equilateral and $x=60^{\circ}$, so this is a degenerate case once again.

This leaves just one case to consider where Y coincides with C. In this case, $B Q=Q C$ and so $\angle A B Q=\angle C B Q=\angle B C Q=\frac{180^{\circ}-60^{\circ}}{3}=40^{\circ}$. We can verify that this $40^{\circ}-60^{\circ}-80^{\circ}$ triangle verifies the condition of the question: Extend $A B$ to X so that $B X=B P$. Then $\triangle A P X$ is congruent to $\triangle A P C$, since $\angle P X B=\angle A C B=40^{\circ}, \angle B A P=\angle C A P=30^{\circ}$ and $A P$ is a common side. It follows that $P X=P C$ and so $\angle P X C=\angle P C X=20^{\circ}$. Hence, $\angle A X C=\angle A C X=60^{\circ}$, so $\triangle A X C$ is equilateral. Thus, $A X=A C \Rightarrow A B+B X=$ $A Q+Q Y \Rightarrow A B+B P=A Q+Q B . \mathrm{QED}$.

Second soln. Let $\angle A B Q=\angle C B Q=\alpha, A B=c . A C=b, B C=a$. By sine rule, we have

$$
B P=\frac{c \sin 30^{\circ}}{\sin \left(2 \alpha+30^{\circ}\right)}
$$

By sine rule again, we have

$$
B Q=\frac{c \sin 60^{\circ}}{\sin \left(\alpha+60^{\circ}\right)}, \quad A Q=\frac{c \sin \alpha}{\sin \left(\alpha+60^{\circ}\right)}
$$

From $A B+B P=A Q+Q B$, we have

$$
1+\frac{1}{2 \sin \left(2 \alpha+30^{\circ}\right)}=\frac{\sin 60^{\circ}+\sin \alpha}{\sin \left(\alpha+60^{\circ}\right)} .
$$

Let $\alpha=\beta+30^{\circ}$, we get

$$
\begin{aligned}
& 1+\frac{1}{2 \sin \left(2 \beta+90^{\circ}\right)}=\frac{\sin 60^{\circ}+\sin \left(\beta+30^{\circ}\right)}{\sin \left(\beta+90^{\circ}\right)} \\
& \text { i.e. } \quad \frac{\cos \beta}{\cos 2 \beta}=\sqrt{3}+\sqrt{3} \sin \beta-\cos \beta .
\end{aligned}
$$

Let $\sin \beta=x$. Since $\alpha<90^{\circ}, \beta<60^{\circ}, x \neq \pm 1$. We get the equation:

$$
\begin{array}{ll}
& \frac{\sqrt{1-x^{2}}}{1-2 x^{2}}+\sqrt{1-x^{2}}=\sqrt{3}(1+x) \\
\text { i.e. } & (2 x-1)\left(8 x^{3}-6 x+1\right)=0
\end{array}
$$

$x=1 / 2$ implies $\beta=30^{\circ}, \alpha=60^{\circ}$. Therefore the angles of the triangle are $120,60,0$ which is impossible. Thus we have $8 \sin ^{3} \beta-6 \sin \beta+1=0$. This implies $\sin 3 \beta=-1 / 2$, i.e., $\beta=70^{\circ}, \alpha-40^{\circ}$. Thus the angles are $80,40,60$.
6. Let a, b, c, d be integers with $a>b>c>d>0$. Suppose that

$$
a c+b d=(b+d+a-c)(b+d-a+c) .
$$

Prove that $a b+c d$ is not prime.

Soln. Write the original condition as

$$
\begin{equation*}
a^{2}-a c+c^{2}=b^{2}+b d+d^{2} \tag{*}
\end{equation*}
$$

Assume that $a b+c d=p$ is prime. Then $a=(p-c d) / b$. Substituting this into (*), we get

$$
p(a b-c d-c b)=\left(b^{2}-c^{2}\right)\left(b^{2}+b d+d^{2}\right)
$$

since $1<b^{2}-c^{2}<a b<p$, we have $p \mid\left(b^{2}+b d+d^{2}\right)$. But

$$
b^{2}+b d+d^{2}<2 a b+c d<2 p
$$

we have $b^{2}+b d+d^{2}=p$. Hence, by equating the expressions for p, we get

$$
b(b+d-a)=d(c-d)
$$

Since $\operatorname{gcd}(b, d)=1$, we have $b \mid(c-d)$, a contradiction because $0<c-d<b$.

Second soln. official solution. Suppose to the contrary that $a b+c d$ is prime. Note that

$$
a b+c d=(a+d)+(b-c) a=m \cdot \operatorname{gcd}(a+d, b-c)
$$

for some positive integer m. By assumption, either $m=1$ or $\operatorname{gcd}(a+d, b-c)=1$.
Case (i): $m=1$. Then

$$
\begin{aligned}
\operatorname{gcd}(a+d, b-c) & =a b+c d>a b+c d-(a-b+c+d) \\
& =(a+d)(c-1)+(b-c)(a+1) \\
& \geq \operatorname{gcd}(a+d, b-c)
\end{aligned}
$$

which is false.
Case (ii): $\operatorname{gcd}(a+d), b-c)=1$. Substituting $a c+b d=(a+d) b-(b-c) a$ for the left hand side of $a+c+b d=(b+d+a-c)(b+d-a+c)$, we obtain

$$
(a+d)(a-c-d)=(b-c)(b+c+d) .
$$

In view of this, there exists a positive integer k such that

$$
\begin{aligned}
a-c-d & =k(b-c) \\
b+c+d & =k(a+d)
\end{aligned}
$$

Adding we get $a+b=k(a+b-c+d)$ and thus $k(c-d)=(k-1)(a+b)$. Recall that $a>b>c>d$. If $k=1$ then $c=d$, a contradiction. If $k \geq 2$ then

$$
2 \geq \frac{k}{k-1}=\frac{a+b}{c-d}>2
$$

a contradiction.

Third soln. The equality $a c+b d=(b+d+a-c)(b+d-a+c)$ is equivalent

$$
\begin{equation*}
a^{2}-a c+c^{2}=b^{2}+b d+d^{2} \tag{1}
\end{equation*}
$$

Let $A B C D$ be the quadrilateral with $A B=a, B C=d, C D=b, A D=c, \angle B A D=60^{\circ}$ and $\angle B C D=120^{\circ}$. such a quadrilateral exists in view of (1) and the law of cosines; the common value in (1) is $B D^{2}$. Let $\angle A B C=\alpha$ so that $\angle C D A=180^{\circ}-\alpha$. Apply the law of cosines to $\triangle A B C$ and $\triangle A C D$ gives

$$
a^{2}+d^{2}-2 a d \cos \alpha=A C^{2}=b^{2}+c^{2}+2 b c \cos \alpha
$$

Hence $2 \cos \alpha=\left(a^{2}+d^{2}-b^{2}-c^{2}\right) /(a d+b c)$, and

$$
A C^{2}=a^{2}+d^{2}-a d \frac{a^{2}+d^{2}-b^{2}-c^{2}}{a d+b c}=\frac{(a b+c d)(a c+b d)}{a d+b c}
$$

Because $A B C D$ is cyclic, Ptolemy's theorem gives

$$
(A C \cdot B D)^{2}=(a b+c d)^{2}
$$

It follows that

$$
\begin{equation*}
(a c+b d)\left(a^{2}-a c+c^{2}\right)=(a b+c d)(a d+b c) \tag{2}
\end{equation*}
$$

Next observe that

$$
\begin{equation*}
a b+c d>a c+b d>a d+b c \tag{3}
\end{equation*}
$$

The first follows from $(a-d)(b-c)>0$ and the second from $(a-b)(c-d)>0$.

Now assume that $a b+c d$ is prime. It then follows from (3) that $a b+c d$ and $a c+b d$ are relatively prime. Hence from (2), it must be true that $a c+b d$ divides $a d+b c$. However, this is impossible by (3). Thus $a b+c d$ is not prime.

Fourth soln. Consider the substitution: $w=-a+b+c+d, x=a-b+c+d, y=$ $a+b-c+d, z=a+b+c-d$. Notice that $0<w<x<y<z$ because $w>0$ from the condition for $a c+b d$ and the other inequalities follow from $a>b>c>d$. This substitution gives: $a=(-w+x+y+z) / 4$ etc Plug this into the condition for $a c+b d$ and we obtain: $3 w y=x z$.

We want to show that $a b+c d=(w x+y z) / 4$ is not prime. To do this, consider writing $w=2^{a_{1}} 3^{b_{1}} t_{1}$ where t_{1} is a product of odd prime powers bigger than 3 . Now, write similar expressions for x, y, z, using the subscripts $2,3,4$.

Suppose a prime $p>3$ divides w, then because $3 w y=x z, p \mid x$ or z. But if p divides z, then p divides $w x+y z$ and we are done, so assume p divides x. This implies $t_{1} \mid t_{2}$. We can use a similar argument to show that $t_{2} \mid t_{1}$. Hence $t_{1}=t_{2}$. Similarly $t_{3}=t_{4}$.

From $3 w y=x z$, we have $a_{1}+a_{3}=a_{2}+a_{4}$ and $1+b_{1}+b_{3}=b_{2}+b_{4}$. If $a_{1}=a_{2}$, then from the inequality $0<w<x<y<z$, we have $b_{2} \geq b_{1}+1, b_{3} \geq b_{4}$ and finally $a_{3}<a_{4}$, a contradiction. Thus $a_{1} \neq a_{2}$. Similarly, $a_{3} \neq a_{4}$. Thus $a_{1}+a_{2}>0$ and $a_{3}+a_{4}>0$. Since $w x+y z=2^{a_{1}+a_{2}} 3^{b_{1}+b_{2}} t_{1}^{2}+2^{a_{3}+a_{4}} 3^{b_{3}+b_{4}} t_{3}^{2}$. Hence $8 \mid w x+y z$ as $3^{b_{1}+b_{2}} t_{1}^{2}+3^{b_{3}+b_{4}} t_{3}^{2} \equiv 4$ $(\bmod 8)$ since $b_{1}+b_{2}$ and $b_{3}+b_{4}$ have opposite parity.

