## 45th International Mathematical Olympiad

Athens, Greece, July 2004

1. Let $A B C$ be an acute-angled triangle with $A B \neq A C$. The circle with diameter $B C$ intersects the sides $A B$ and $A C$ at $M$ and $N$, respectively. Denote by $O$ the midpoint of the side $B C$. The bisectors of the angles $B A C$ and $M O N$ intersect at $R$. Prove that the circumcircles of the triangles $B M R$ and $C N R$ have a common point lying on the side $B C$.

Soln. The radical centre of the three circles is $A$. Thus the radical axis of circles $B M R$ and $C N R$ is $A R$. Thus we only need to show that $B M R L$ and $C N R L$ are cyclic, where $L=A R \wedge B C$. We have

$$
O M=O N \quad \text { and } \quad \angle N O R=\angle M O R \quad \Rightarrow \quad M R=R N
$$

Also $\angle M A R=\angle N A R, A R=A R$ and $M R=R N$ imply either (i) $\triangle A M R \equiv \triangle A N R$ which in turn implies that $A M=A N$ (impossible as $A B \neq A C$ ); or (ii) $\angle A M R+\angle A N R=$ $180^{\circ}$ which in turn implies that $A M R N$ is cyclic. (This fact can also be obtained by noting that the perpendicular bisector of $M N$ and the angle bisector of $\angle M A N$ meet at $R$.) This then implies that $\angle A R N=\angle A M N=\angle A C B=\angle A C L$, whence $R N C L$ is cyclic. Similarly, $R M B L$ is cyclic.


Second soln. Denote by $T$ the midpoint of $M N$. Since $\triangle A B C$ and $\triangle A N M$ are similar, with respective medians $A O$ and $A T$, we have $\angle B A O=\angle C A T$. Thus the bisector $A R$ of $\angle B A C$ also bisects $\angle O A T$. Therefore $\frac{R T}{R O}=\frac{A T}{A O}$. Furthermore, using the same fact again,

$$
\frac{A T}{A O}=\frac{M N}{B C}=\frac{M T}{B O}=\frac{M T}{M O} .
$$

We conclude that $M R$ bisects $\angle O M N$. Now $\angle B M O=\angle B(O$ is the centre of the circle $(B C N M)$. Combined with $\angle A M N=\angle C$, this yields $\angle O M N=\angle A$, and hence $\angle B M R=\angle B+\angle A / 2=\angle C L R$. So $B, L, R, M$ are concyclic. Likewise, $C, L, R, N$ are concyclic.
2. Find all polynomials $P(x)$ with real coefficients which satisfy the equality

$$
P(a-b)+P(b-c)+P(c-a)=2 P(a+b+c)
$$

for all triples $a, b, c$ of real numbers such that $a b+b c+c a=0$.

Soln. Put $a=b=c=0$, we get $3 P(0)=2 P(0)$ which implies $P(0)=0$. Put $a=b=0$, we get $P(-c)=P(c)$ for all real $c$. Thus the polynomial has only even powers: $P(x)=\sum_{m=1}^{k} a_{2 m} x^{2 m}$.

Since the expression $a b+b c+c a=0$ is homogeneous, we may assume that $a=1$. This yields $b=-c /(1+c)$. Thus a general solution is

$$
a=1+t, \quad b=-t, \quad c=t+t^{2} .
$$

Let

$$
\begin{aligned}
& A(n)=(a-b)^{n}+(b-c)^{n}+(c-a)^{n}=(1+2 t)^{n}+\left(t^{2}+2 t\right)^{n}+\left(t^{2}-1\right)^{n} . \\
& B(n)=2(a+b+c)^{n}=2\left(t^{2}+t+1\right)^{n}
\end{aligned}
$$

It is easily seen that by direct computation that $A(2)=B(2)$ and $A(4)=B(4)$. Now consider $n \geq 6$. Again direct computation shows that the coefficients of $t^{2 n}$ and $t^{2 n-1}$ of $A(n)$ and $B(n)$ are equal. The coefficient of $t^{2 n-2}$ of $A(n)$ is $4\binom{n}{2}-\binom{n}{1}$ while that of $B(n)$ is $2\left(\binom{n}{2}+\binom{n}{1}\right.$ ). It's clear that the latter is strictly smaller than the former for $n \geq 6$. This shows that $P(a-b)+P(b-c)+P(c-a)$ and $2 P(a+b+c)$, as polynomials in $t$, are not identical if $k \geq 3$ (the terms in $t^{4 k-2}$ are different) and are identical if $k \leq 2$. So the answer is $P(x)=a x^{2}+b x^{4}$, where $a, b$ are real numbers.
3. Define a hook to be a figure made up of six unit squares as shown in the diagram

or any of the figures obtained by applying rotations and reflections to this figure.
Determine all $m \times n$ rectangles that can be covered with hooks so that
(i) the rectangle is covered without gaps and without overlaps;
(ii) no part of a hook covers area outside the rectangle.

Soln. For any hook $A$, there is unique hook $B$ covering the "inside" square of $A$ with one of its "endmost" squares. In turn, the "inside" square of $B$ must be covered by an "endmost" square of $A$. Thus, the hooks must come in pairs, in two different ways as shown in the figure below. We call such a pair a tile.


Depending on how the tile is placed, there are two cases:
(a) The column lengths of the tile are odd (3) while the row lengths are even (2 or 4) as shown in the figure above.
(b) The column lengths of the tile are even while the row lengths are odd.

Suppose a tiling a possible, then $12 \mid m n$. Also it is easy to see that $m, n \neq 1,2,5$. We shall prove that one of $m, n$ is a multiple of 4 . If the number of tiles is even, then $24 \mid m n$ and thus one of $m, n$ is divisible by 4 and we are done. Thus we may assume that the number of tiles is odd. So one of (a) and (b) must occur an odd number of times. By symmetry, we may assume that (a) occurs an odd number of times.

Colour black every 4th column from the left. Each type (a) tile must intersect one black column. Since each type (b) tile can cover an even number of black squares, we see that the total number of black squares is odd. Thus the column length is odd, i.e, one of $m, n$ is odd and so the other is divisible by 4 .

Conversely, suppose $12 \mid m n, 4$ divides one of $m, n$, and none of the sides is 1,2 , or 5 . If $4 \mid m$ and $3 \mid n$, then we can easily cover the rectangle with the $3 \times 4$ tiles.

If $12 \mid m$ and $3 \nmid n$, then write $n=3 p+4 r$. We can then partition the rectangle into $m \times 3$ and $m \times 4$ rectangles. So a covering is again possible.
4. Let $n \geq 3$ be an integer. Let $t_{1}, t_{2}, \ldots, t_{n}$ be positive real numbers such that

$$
n^{2}+1>\left(t_{1}+t_{2}+\cdots+t_{n}\right)\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}+\cdots+\frac{1}{t_{n}}\right) .
$$

Show that $t_{i}, t_{j}, t_{k}$ are side lengths of a triangle for all $i, j, k$ with $1 \leq i<j<k \leq n$.

Soln. By symmetry if suffices to show that $t_{1}<t_{2}+t_{3}$. We have

$$
\begin{aligned}
\text { RHS } & =n+\sum_{1 \leq i<j \leq n} \frac{t_{i}}{t_{j}}+\frac{t_{j}}{t_{i}} \\
& =n+t_{1}\left(\frac{1}{t_{2}}+\frac{1}{t_{2}}\right)+\frac{1}{t_{1}}\left(t_{2}+t_{3}\right)+\sum_{\substack{(i, j) \neq(1,2),(1,3) \\
1 \leq i<j \leq n}}\left(\frac{t_{i}}{t_{j}}+\frac{t_{j}}{t_{i}}\right)
\end{aligned}
$$

By AM-GM,

$$
\frac{1}{t_{2}}+\frac{1}{t_{2}} \geq \frac{2}{\sqrt{t_{2} t_{3}}}, \quad t_{2}+t_{3} \geq 2 \sqrt{t_{2} t_{3}}, \frac{t_{i}}{t_{j}}+\frac{t_{j}}{t_{i}} \geq 2 .
$$

Thus, setting $x=t_{1} / \sqrt{t_{2} t_{3}}>0$, we get

$$
n^{2}+1>n+2 x+\frac{2}{x}+2\left[\binom{n}{2}-2\right]=2 x+\frac{2}{x}+n^{2}-4 .
$$

Hence $2 x^{2}-5 x+2<0$, which implies that $1 / 2<x<2$. Therefore $t_{1}<2 \sqrt{t_{2} t_{3}} \leq t_{2}+t_{3}$ as required.
5. In a convex quadrilateral $A B C D$ the diagonal $B D$ bisects neither the angle $A B C$ nor the angle $C D A$. The point $P$ lies inside $A B C D$ and satisfies

$$
\angle P B C=\angle D B A \quad \text { and } \quad \angle P D C=\angle B D A .
$$

Prove that $A B C D$ is a cyclic quadrilateral if and only if $A P=C P$.

## Soln.



Since $P$ is in the interior of $A B C D$, we have $\angle D B A<\angle D B C$ iff $\angle B D A<\angle B D C$. So we may assume that $P$ lies in triangles $A C D$ and $B C D$. Also let $\angle P B C=\angle D B A=y$ and $\angle P D C=\angle B D A=x$.

Assume that $A B C D$ is cyclic. Let the lines $B P$ and $D P$ meet $A C$ at $K$ and $L$, respectively. Then $\angle A C B=\angle A D B=x, \angle A B D=\angle A C D=y$. Therefore $\angle P L K=$ $x+y=\angle P K L$, whence $P K=P L$. Also $\triangle A D L \simeq \triangle B D C$ and $\triangle A B D \simeq \triangle K B C$. Hence

$$
\frac{A L}{B C}=\frac{A D}{B D}=\frac{K C}{B C}
$$

yielding $A L=K C$. Combine with the conclusions above, this implies that $\triangle A L P \equiv$ $\triangle C K P$. Hence $A P=C P$.

Conversely, assume that $A P=C P$. Let the circumcircle of $B C P$ meet the lines $C D$ and $D P$ again at $X$ and $Y$, respectively. The $\triangle A D B \simeq \triangle P D X$. Therefore $D A / D P=$ $D B / D X$ and so $\triangle A D P \simeq \triangle B D X$. Therefore

$$
\frac{B X}{A P}=\frac{B D}{A D}=\frac{X D}{P D}
$$

Moreover, $\triangle D P C \simeq \triangle D X Y$, which gives $\frac{Y X}{C P}=\frac{X D}{P D}$. Since $A P=C P$, we have $B X=$ $Y X$. Hence

$$
\angle D C B=\angle X Y B=\angle X B Y=\angle X P Y=x+y=180^{\circ}-\angle B A D .
$$

This implies that $A B C D$ is cyclic.
6. We call a positive integer alternating if every two consecutive digits in its decimal representation are of different parity.
Find all positive integers $n$ such that $n$ has a multiple which is alternating.
Soln. (Official) A positive integer is alternating iff it is not a multiple of 20.
The last two digits of a multiple of 20 are both even and so it can't be alternating. For the other integers, there are several cases.
a) Every power of 2 has an alternating multiple with an even number of digits.

Proof: If suffices to construct an infinite sequence $\left\{a_{n}\right\}$ such that

$$
a_{n} \equiv n+1 \quad(\bmod 2), \quad 2^{2 n-1}\left\|\overline{a_{2 n-1} a_{2 n-2} \ldots a_{1}} ; \quad 2^{2 n+1}\right\| \overline{a_{2 n} a_{2 n-1} \ldots a_{1}}
$$

for each $n$. (Here for any positive integers $a, b, c, a^{b} \| c$ means $b$ is the largest integer such that $a^{b} \mid c$.) Start with $a_{1}=2, a_{2}=7$. If the sequence is constructed up to $a_{2 n}$, set $a_{2 n+1}=4$. Then $a_{2 n+1}$ is even, and

$$
2^{2 n+1} \| \overline{a_{2 n+1} \ldots a_{1}}=4 \cdot 10^{2 n}+\overline{a_{2 n} \ldots a_{1}}
$$

because $2^{2 n+1} \| \overline{a_{2 n} \ldots a_{1}}$ by the induction hypothesis and $2^{2 n+2} \| 4 \cdot 10^{2 n}$. Denote $\overline{a_{2 n+1} \ldots a_{1}}=2^{2 n+1} A$, with $A$ odd. Now $a_{2 n+2}$ must be odd and such that

$$
2^{2 n+3} \| \overline{a_{2 n+2} \ldots a_{1}}=a_{2 n+2} 10^{2 n+1}+\overline{a_{2 n+1} \ldots a_{1}}=2^{2 n+1}\left[a_{2 n+2} 5^{2 n+1}+A\right]
$$

which holds whenever $5 a_{2 n+2}+A \equiv 4(\bmod 8)$. The solutions of the last congruence are odd, since $A$ is odd. In addition, a solution $a_{2 n+2}$ can be chosen from $\{0, \ldots, 7\}$. The construction is complete.
b) Each number of the form $2 \cdot 5^{n}$ has an alternating multiple with an even number of digits.

Proof: We construct an infinite sequence $\left\{b_{n}\right\}$ such that

$$
b_{n} \equiv n+1 \quad(\bmod 2) \quad \text { and } \quad 2 \cdot 5^{n} \mid \overline{b_{n} \ldots b_{1}}
$$

for each $n$. Start with $b_{1}=0$ and $b_{2}=5$. Suppose $b_{1}, \ldots, b_{n}$ have been constructed. Let $\overline{b_{n} \ldots b_{1}}=5^{\ell} B$, where $\ell \geq n$ and $5 \nmid B$. The next digit $b_{n+1}$ must be such that $b_{n+1} \equiv n+2$ $(\bmod 2)$ and $5^{n+1}$ divides

$$
\overline{b_{n+1} \ldots b_{1}}=b_{n+1} 10^{n}+\overline{b_{n} \ldots b_{1}}=5^{n}\left[b_{n+1} 2^{n}+5^{\ell-n} B\right] .
$$

The latter is true whenever $b_{n+1} 2^{n}+B$ is divisible by 5 . Now the system of simultaneous congruence $b_{n+1} \equiv n+2 \quad(\bmod 2), b_{n+1} 2^{n}+B \equiv 0 \quad(\bmod 5)$ has a solution by Chinese remainder theorem, since $2^{n}$ and 5 are coprime. Also, a solution $b_{n+1}$ can be chosen in $\{0, \ldots, 9\}$, as needed.

For the general case $n=2^{\alpha} 5^{\beta} k$, where $k$ is not a multiple of 5 or 2 and $\alpha \leq 1$. First we note that $2^{\alpha} 5^{\beta}$ has an alternating multiple $M$ with an even number, say $2 m$, of digits.

Thus all numbers of the form $\overline{M M \ldots M}$ are also alternating. We claim that one of them is a multiple of $n$. Consider the numbers

$$
C_{\ell}=1+10^{2 m}+\cdots+10^{2 m(\ell-1)}, \quad \ell=1,2, \ldots, k+1
$$

There exist $1 \leq i<j \leq k+1$ such that $C_{i} \equiv C_{j} \quad(\bmod k)$. Hence $k \mid C_{j}-C_{i}=C_{j-i} 10^{2 m i}$. Since 10 is coprime to $k$, it follows that $k \mid C_{j-i}$. Now it is straightforward that $C_{j-i} \times M$, a number of the form $\overline{M M \ldots M}$ is an alternating multiple of $n$.

Soln. Solution by Joel Tay, (RJC). The answer is every positive integer $n$ which is not a multiple of 20 . If 20 divides $n$, then the last 2 digits of any multiple of $n$ are even, hence cannot be alternating. If $20 \nmid n$, then either (1) $2 \| n$, (2) $2 \nmid n$ or (3) $2^{2} \mid n, 5 \nmid n$. We consider these 3 cases separately.

Case (1): $2 \| n$. We can reduce this to case (2) as follow. In this case, $n / 2$ is odd. By case (2), an alternating multiple of $n / 2$ is obtained. If this number is even, then it is an alternating multiple of $n$. If it is odd, multiplying by 10 (that is adding a zero to its unit place) gives an alternating multiple of $n$.

Case (2a): $2 \nmid n$ and $5 \nmid n$. That is $(n, 10)=1$. Consider the number $x=1212 \cdots 12$, where the digits ' 12 ' are repeated $k$ times. Here $k$ is taking to be large, say larger than $n \phi(n)$, where $\phi$ is the Euler function. Since $(2, n)=1$, there exists an integer $y, 1 \leq y \leq n$ such that $2 y \equiv-x \quad(\bmod n)$. On the other hand, $(10, n)=1$ implies that $10^{\phi(n)} \equiv 1$ $(\bmod n)$. Thus $2 \times 10^{\phi(n)} \equiv 2 \quad(\bmod n)$ and $2 \times 10^{m \phi(n)} \equiv 2(\bmod n)$ for all integer $m$. Therefore,
$a=2+2 \times 10^{\phi(n)}+2 \times 10^{2 \phi(n)}+\cdots+2 \times 10^{(y-1) \phi(n)} \equiv 2+2+\cdots+2 \equiv 2 y \equiv-x \quad(\bmod n)$.

That is $a+x$ is a multiple of $n$. Note that $x$ is alternating and the digits of $a$ are all even and the length of $a$ is shorter than the length of $x$. Thus $a+x$ is alternating.

Case (2b): $2 \nmid n$ and $5^{c} \| n$, where $c$ is a positive integer. We shall first find an alternating multiple of $5^{c}$ having at most $c$ digits. To do so, we construct inductively an alternating multiple $\overline{a_{m-1} \cdots a_{2} a_{1} a_{0}}$ of $5^{m}$ for $m=1,2, \ldots, c$. Take $a_{0}=5, a_{1}=2$. Suppose $5^{m}$ divides the alternating number $\overline{a_{m-1} \cdots a_{2} a_{1} a_{0}}$.

First note that $0 \times 10^{m}, 2 \times 10^{m}, 4 \times 10^{m}, 6 \times 10^{m}, 8 \times 10^{m}$ are distinct mod $5^{m+1}$ and $5^{m}$ divides all of them. Similarly, $1 \times 10^{m}, 3 \times 10^{m}, 5 \times 10^{m}, 7 \times 10^{m}, 9 \times 10^{m}$ are also distinct $\bmod 5^{m+1}$ and $5^{m}$ divides all of them. So there exists exactly one number among $0 \times 10^{m}, 2 \times 10^{m}, 4 \times 10^{m}, 6 \times 10^{m}, 8 \times 10^{m}$ or exactly one number among $1 \times 10^{m}$, $3 \times 10^{m}, 5 \times 10^{m}, 7 \times 10^{m}, 9 \times 10^{m}$ where we denote it by $a_{m} \times 10^{m}$ such that it is the additive inverse of $\overline{a_{m-1} \cdots a_{2} a_{1} a_{0}}\left(\bmod 5^{m+1}\right)$. In other words, $\overline{a_{m} a_{m-1} \cdots a_{2} a_{1} a_{0}}$ is divisible by $5^{m+1}$. Furthermore the parity of $a_{m}$ can be chosen to be different from that of $a_{m-1}$, hence ensuring $\overline{a_{m} a_{m-1} \cdots a_{2} a_{1} a_{0}}$ is alternating. This completes the proof that there is an alternating multiple $\overline{a_{c-1} \cdots a_{2} a_{1} a_{0}}$ of $5^{c}$ having at most $c$ digits.

Now consider the integer $n$. First choose a positive integer $q$ such that $q \phi\left(n / 5^{c}\right)>$ c. Note that $5^{c}$ divides any number ending with $\overline{a_{c-1} \cdots a_{2} a_{1} a_{0}}$. As such consider the following number.

$$
x= \begin{cases}\overline{101010 \cdots 10 a_{c-1} \cdots a_{2} a_{1} a_{0}} & \text { if } a_{c-1} \text { is odd } \\ 010101 \cdots 01 a_{c-1} \cdots a_{2} a_{1} a_{0} & \text { if } a_{c-1} \text { is even }\end{cases}
$$

Here there are $k$ ' 01 's or ' 10 's in $x$. Also $k$ is chosen to be sufficiently large, say larger than $(q+n) \phi\left(n / 5^{c}\right)$.

As noted before, $5^{c}$ divides $x$ and $x$ is alternating. Since $\left(2, n / 5^{c}\right)=1$, there exists an integer $y$ with $1 \leq y \leq n / 5^{c}$ such that $2 y \equiv-x \quad\left(\bmod n / 5^{c}\right)$.

Also $2 \times 10^{m \phi\left(n / 5^{c}\right)} \equiv 2\left(\bmod n / 5^{c}\right)$ for all integers $m$. Thus
$a=2 \times 10^{q \phi\left(n / 5^{c}\right)}+2 \times 10^{(q+1) \phi\left(n / 5^{c}\right)}+\cdots+2 \times 10^{(q+y-1) \phi\left(n / 5^{c}\right)} \equiv 2+2+\cdots 2 \equiv 2 y \equiv-x$
$\left(\bmod n / 5^{c}\right)$. In decimal representation, $a=\overline{200 \cdots 0200 \cdots 0 \cdots 200 \cdots 0}$, where each block of ' $200 \cdots 0$ ' has at least $c$ zeros since $q \phi\left(n / 5^{c}\right)>c$. Thus $a+x$ is alternating as the addition of $a$ to $x$ does not affect the first $c$ digits of $x$, all digits of $a$ are even and $x$ is long enough to have more digits than $a$. Therefore $a+x$ is alternating and divisible by $n / 5^{c}$. Since $a+x$ is also divisible by $5^{c}$ and $\left(5^{2}, n / 5^{c}\right)=1$, it is divisible by $n$.

Case (3): $2^{c} \| n$, where $c \geq 2$ and $5 \nmid n$. We first construct an alternating multiple of $2^{c}$. Take $x=\overline{1010 \cdots 10}$ or $\overline{0101 \cdots 010}$, so that it has $c$ digits. Note that $2 \| x$. (That is $x / 2$ is odd.) Now we use induction to construct an alternating multiple of $2^{m}$ ( $2 \leq m \leq c$ ) of the form $x+\overline{a_{m-2} a_{m-3} \cdots a_{0}}$, where all digits $a_{0}, a_{1}, \ldots, a_{m-2}$ are even.

For $m=2$, take $a_{0}=6$. Then $2^{2}$ divides $\overline{101 \cdots 16}$ or $\overline{010 \cdots 016}$. Suppose $2^{m}$ divides $x+\overline{a_{m-2} a_{m-3} \cdots a_{0}}$. Note that $0 \times 10^{m-1}$ and $2 \times 10^{m-1}$ are distinct mod $2^{m+1}$ and that $2^{m}$ divides both of them. Exactly one of them is congruent to $-x-\overline{a_{m-2} a_{m-3} \cdots a_{0}}$ $\left(\bmod 2^{m+1}\right)$. Denote that one by $a_{m-1} \times 10^{m-1}$. Then $x+\overline{a_{m-1} a_{m-2} \cdots a_{0}}=x+$ $\overline{a_{m-2} a_{m-3} \cdots a_{0}}+a_{m-1} \times 10^{m-1}$ is divisible by $2^{m+1}$. Since $a_{0}=6$ and $a_{1}, \ldots, a_{m-1}$ are either 0 or 2 , the number $x+\overline{a_{m-1} a_{m-2} \cdots a_{0}}$ is an alternating multiple of $2^{m+1}$. Consequently, we have constructed an alternating multiple of $2^{c}$ having at most $c$ digits.

Now we return to the case $n=2^{c} k$, where $(2, k)=1,(5, k)=1$ and $c \geq 2$. Denote the alternating multiple of $2^{c}$ obtained above by $\overline{b_{c-1} b_{c-2} \cdots b_{0}}$. Consider

$$
x= \begin{cases}\overline{\frac{101010 \cdots 10 b_{c-1} \cdots b_{2} b_{1} b_{0}}{010101 \cdots 01 b_{c-1} \cdots b_{2} b_{1} b_{0}}} & \text { if } b_{c-1} \text { is odd } \\ \text { if } b_{c-1} \text { is even }\end{cases}
$$

where ' 10 ' or ' 01 ' is repeated $k$ times and $k$ is chosen sufficiently large, say larger ( $q-n-$ 1) $\phi\left(n / 2^{c}\right)$ with $q \phi\left(n / 2^{c}\right)>c$. Note that $x$ is alternating and is divisible by $2^{c}$.

Let $y$ be an integer with $1 \leq y \leq n / 2^{c}$ such that $2 y \equiv-x \quad\left(\bmod n / 2^{c}\right)$. As before,
$a=2 \times 10^{q \phi\left(n / 2^{c}\right)}+2 \times 10^{(q+1) \phi\left(n / 2^{c}\right)}+\cdots+2 \times 10^{(2+y-1) \phi\left(n / 5^{c}\right)} \equiv 2+2+\cdots 2 \equiv 2 y \equiv-x$
$\left(\bmod n / 2^{c}\right)$. That is $a+x$ is divisible by $n / 2^{c}$ and it is alternating. Since $q \phi\left(n / 2^{c}\right)>c$, the first $c$ digits of $a+x$ is $\overline{b_{c-1} b_{c-2} \ldots b_{0}}$ and thus $a+x$ is divisible by $2^{c}$. Therefore it is an alternating multiple of $n$.

Solution by Andre Kueh, (RJC). Let $n=2^{a} 5^{b} k$, where $a$ and $b$ are non-negative integers and $(k, 2)=1,(b, 5)=1$. Since $(10, k)=1$, there exists a positive integer $m$ such that $10^{m} \equiv 1 \quad(\bmod k)$. We first prove the following lemma.

Lemma There exists an alternating number $j$ with $2 m$ digits and an odd digit at the unit place such that $(j, k)=1$. Furthermore there exists a positive integer $\alpha$ such that $\alpha j \equiv 1 \quad(\bmod k)$.

Proof Let $j=\left(10^{2 m}-1\right) / 99+2 \ell 10^{2 m-1}, \ell=1,2,3$. In other words, $j$ is the $2 m$-digit number $\overline{\eta 10101 \cdots 01}$, where $\eta=2,4,6$. As $\left(10^{2 m}-1,10^{2 m-1}\right)=1$, we have $\left(\left(10^{2 m}-1\right) / 99,10^{2 m-1}\right)=1$ so that the common factors of $\left(10^{2 m}-1\right) / 99$ and $2 \ell 10^{2 m-1}$ are factors of $2 \ell$. Since $\left(10^{2 m}-1\right) / 99$ is odd, the common factors of $\left(10^{2 m}-1\right) / 99$ and $2 \ell 10^{2 m-1}$ is either 1 or 3 . Thus the common factors of $\left(10^{2 m}-1\right) / 99$ and $\left(10^{2 m}-1\right) / 99+$ $2 \ell 10^{2 m-1}$ is either 1 or 3 . Consequently, $\left(10^{2 m}-1,\left(10^{2 m}-1\right) / 99+2 \ell 10^{2 m-1}\right)$ is a factor of $99 \times 3=3^{3} \times 11$. Since there are 3 possible choices for $\ell$, we may choose $\ell$ such that $j=\left(10^{2 m}-1\right) / 99+2 \ell 10^{2 m-1}$ is not divisible by both 3 and 11 . Now for this choice of $\ell$, we have $\left(j, 10^{2 m}-1\right)=1$. Thus $(j, k)=1$ as $k$ divides $10^{m}-1$. Since $(j, k)=1$, there exists $\alpha$ such that $\alpha j \equiv 1(\bmod k)$. This completes the proof of the lemma.

Note that $j$ has $2 m$ digits and a finite number of concatenations of $j$ is still an alternating number.

Case (1): $a=b=0$. That is $n=k$. Let $x=\overline{j j \cdots j}$, where there are $n$ copies of $j$. In other words, $x=j+j \times 10^{2 m}+\cdots+j \times{ }^{2 m(n-1)}$. Since $n(=k)$ divides $2^{m}-1$, we have $10^{2 m} \equiv 1(\bmod n)$. Thus $x \equiv j+j+\cdots+j=n j \equiv 0(\bmod n)$. That is $x$ is an alternating multiple of $n$.

Case (2): $a \geq 2, b=1$. This impels that $n$ is a multiple of 20 . As the last two digits of any multiple of 20 are always even, $n$ cannot have an alternating multiple.

Case (3): $a=0, b \geq 1$. That is $n=5^{b} k$. First we construct inductively an alternating multiple of $5^{b}$ having at least $b$ digits whose unit digit is odd. When $b=1$, take the number 5 itself. Suppose $\overline{a_{b-1} a_{b-2} \cdots a_{0}}$ is an alternating multiple of $5^{b}$. Then $\overline{a_{b-1} a_{b-2} \cdots a_{0}} \equiv$ $c \times 5^{b} \quad\left(\bmod 5^{b+1}\right)$. Note that $0 \times 10^{b}, 2 \times 10^{b}, 4 \times 10^{b}, 6 \times 10^{b}, 8 \times 10^{b}$ are distinct residue classes modulo $5^{b+1}$, so do $1 \times 10^{b}, 3 \times 10^{b}, 5 \times 10^{b}, 7 \times 10^{b}, 9 \times 10^{b}$. We may pick an additive inverse $a_{b} \times 10^{b}$ of $c \times 5^{b}$ modulo $5^{b+1}$ such that $a_{b}$ and $a_{b-1}$ are of opposite parity. Then $\overline{a_{b} a_{b-1} \cdots a_{0}} \equiv a_{b} \times 10^{b}+c \times c \times 10^{b} \equiv 0 \quad\left(\bmod 10^{b+1}\right)$, giving an alternating multiple of $5^{b+1}$.

Note that adding any arbitrary digits to the front of this alternating multiple of $5^{b}$ will still be a multiple of $5^{b}$. Thus we may add random odd and even digits to this alternating multiple of $b$ taking care to ensure that it remains alternating until we obtain an alternating multiple of $5^{b}$ having $2 p m$ digits for some positive integer $p$. Let this alternating multiple of $5^{b}$ be $y$. Note that the leftmost digit of $y$ is even. Now let $q \equiv-y(\bmod k)$, where $q \in\{1,2, \ldots, k\}$. Consider the number $x=\overline{j j \cdots j j y}$. Here the number $x$ has $q \alpha$ copies of $j$, where $\alpha$ is the number provided by the lemma. As $10^{m} \equiv 1(\bmod k)$, we have $x \equiv q \alpha j+y \equiv 0 \quad(\bmod k)$. Since $x$ is divisible by $5^{b}$, it is an alternating multiple of $n$.

Case (4): $a \geq 1, b=0$. That is $n=2^{a} k$. First we construct inductively an alternating multiple of $2^{a}$ having at least $a$ digits. Let $2^{a}=\overline{a_{s-1} a_{s-2} \cdots a_{1} a_{0}}$. The unit digit $a_{0}$ is always even. If $a_{1}$ is also even, we may add $\overline{a_{s-1} a_{s-2} \cdots a_{1} a_{0}}$ to itself a number of times until a carry occurs in the 10th place. Then the digit at the 10th place of the resulting
number is odd. In this way, we obtain a multiple of $2^{a}$ of the form $\overline{p_{r} p_{r-1} \cdots p_{1} p_{0}}$ such that at least the first 2 right-most digits are of opposite parity. Now suppose $p_{\mu}$ is the first non-alternating digit in the number $\overline{p_{r} p_{r-1} \cdots p_{1} p_{0}}$. We consider the following two cases.

Suppose both $p_{\mu}$ and $p_{\mu-1}$ are odd. We add a certain multiple of $\overline{a_{s} a_{s-1} \cdots a_{1} a_{0} 00 \cdots 0}$ to $\overline{p_{r} p_{r-1} \cdots p_{\mu} p_{\mu-1} \cdots p_{1} p_{0}}$, where there are $(\mu-1)$ zeros in the first number, until a carry occurs at the $10^{\mu}$ th place. Then the resulting multiple of $2^{a}$ will be alternating starting from right to left up to the $(\mu+1)$ th digit.

Suppose both $p_{\mu}$ and $p_{\mu-1}$ are even. We add a certain multiple of $\overline{a_{s} a_{s-1} \cdots a_{1} a_{0} 00 \cdots 0}$ to $\overline{p_{r} p_{r-1} \cdots p_{\mu} p_{\mu-1} \cdots p_{1} p_{0} \text {, where there are }(\mu-1) \text { zeros in the first number, until the }}$ first time no carry occurs at the $10^{\mu}$ th place. Again, the resulting multiple of $2^{a}$ will be alternating starting from right to left up to the $(\mu+1)$ th digit.

Continue the above procedure until the alternating multiple of $2^{a}$ so obtained has at least $a$ digits. Then the number obtained by taking the first $a$ digits of this multiple of $2^{a}$ is again an alternating multiple of $2^{a}$. That is we discard all the digits after the $10^{a}$ place. Now as in case (3), we may add random digits to the front of this number until it has $2 p m+1$ digits for some positive integer $p$. Denote the resulting alternating multiple of $2^{a}$ by $y$. Note that both the first and last digits of $y$ are even.

Since $(10, k)=1 \quad(\bmod k)$, there exists $t \in\{1,2, \ldots, k\}$ such that $10 t \equiv 1 \quad(\bmod k)$. Also let $q \in\{1,2, \ldots, k\}$ be such that $q \equiv-y(\bmod k)$.

Consider the number $x=\overline{j j \cdots j j y}$. Here the number $x$ has $t q \alpha$ copies of $j$, where $\alpha$ is the number provided by the lemma. Note that $x$ is alternating as the unit digit of $j$ is odd. As $10^{m} \equiv 1(\bmod k)$ so that $10^{2 m r+1} \equiv 10(\bmod k)$ for any positive integers $r$, we have $x \equiv 10 t q \alpha j+y \equiv q+y \equiv 0 \quad(\bmod k)$. Since $x$ is divisible by $2^{a}$, it is an alternating multiple of $n=2^{a} k$.

Case (5): $a=1, b \geq 1$. By case (3), there is an alternating multiple $\overline{a_{r} a_{r-1} \cdots a_{0}}$ of $n / 10$, where $a_{0}$ is odd. Then $\overline{a_{r} a_{r-1} \cdots a_{0} 0}$ is an alternating multiple of $n$.

Concluding all, we have shown that a positive integer $n$ is alternating if and only if it is not a multiple of 20 .

