33th International Mathematical Olympiad

Russia, July 1992.

1. Find all integers a, b, c with $1<a<b<c$ such that $(a-1)(b-1(c-1)$ is a divisor of $a b c-1$.

Soln. Write $x=a-1, y=b-1$ and $z=c-1$. The problem is equivalent to: Find all integers x, y, z with $0<x<y<z$ such that $x y z$ is a divisor of $x y z+x y+y z+x z+x+y+z$. Let $R(x, y, z)=(x y z+x y+y z+x z+x+y+z) /(x y z)$. Since $R(x, y, z)$ is an integer, x, y, z are either all even or all odd. Also

$$
R(x, y, z)=1+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x y}+\frac{1}{x z}+\frac{1}{y z} .
$$

If $x \geq 3$, then

$$
1<R(x, y, z) \leq R(3,5,7)<2
$$

which is impossible. If $x=2$, then

$$
1<R(x, y, z) \leq R(2,4,6)<3
$$

and so $R(2, y, z)=2$. This implies

$$
(y-3)(z-3)=11
$$

which gives $y=4, z=14$.
If $x=1$, then

$$
1<R(x, y, z) \leq R(1,3,5)<4
$$

If $R(1, x, y)=2$, then $2 y+2 z+1=0$ which is impossible. If $R(1, x, y)=3$, then

$$
(y-2)(z-2)=5
$$

Thus $y=3, z=7$. So there are two possible solutions

$$
(a, b, c)=(3,5,15),(2,4,8)
$$

It is easy to check that both are indeed solutions.
2. Let \mathbb{R} denote the set of all real numbers. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f\left(x^{2}+f(y)\right)=y+f(x)^{2} \quad \text { for all } \quad x, y \in \mathbb{R} . \tag{1}
\end{equation*}
$$

Soln. Let $f(0)=s$ and put $x=0$ in (1),

$$
\begin{equation*}
f(f(y))=y+s^{2} \quad \text { for all } \quad y \in \mathbb{R} \tag{2}
\end{equation*}
$$

Put $y=0$ in (1),

$$
\begin{equation*}
f\left(x^{2}+s\right)=f(x)^{2} \quad \text { for all } \quad x \in \mathbb{R} \tag{3}
\end{equation*}
$$

Put $x=0$ in (3),

$$
\begin{equation*}
f(s)=s^{2} \tag{4}
\end{equation*}
$$

Add (3) and (4),

$$
\begin{equation*}
s^{2}+f\left(x^{2}+s\right)=f(x)^{2}+f(s) \quad \text { for all } \quad y \in \mathbb{R} \tag{5}
\end{equation*}
$$

Apply f to both sides and use $(2),(3),(4)$,

$$
x^{2}+s+s^{4}=s+\left(x+s^{2}\right)^{2} \quad \text { for all } \quad x \in \mathbb{R}
$$

This gives $f(0)=s=0$. Thus, from (2), (3),

$$
\begin{equation*}
f(f(x))=x, \quad f\left(x^{2}\right)=f(x)^{2} \quad \text { for all } \quad x \in \mathbb{R} \tag{6}
\end{equation*}
$$

The latter implies that $f(x) \geq 0$ if $x \geq 0$. If $f(x)=0$ for some $x \geq 0$, then

$$
0=f(x)^{2}=f\left(x^{2}\right)=f\left(x^{2}+f(x)\right)=x+f(x)^{2}=x
$$

Thus

$$
\begin{equation*}
f(x)>0 \quad \text { for all } \quad x>0 . \tag{7}
\end{equation*}
$$

Replace y by f)y) and x by \sqrt{x}, we have

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \quad \text { for all } \quad x>0, y \in \mathbb{R} \tag{8}
\end{equation*}
$$

Now if $x>y$, then

$$
f(x)=f((x-y)+y)=f(x-y)+f(y)>f(y)
$$

Suppose there exists x such that $f(x)>x$, then $x=f(f(x))>f(x)$, a contradiction. Suppose there exists y such that $f(y)<y$, then $y=f(f(y))<f(y)$, again impossible. Thus $f(x)=x$ for all x. This is indeed a solution.
3. Consider nine points in sapce, no four of which are coplanar. Each pair of points is joined by an edge (that is, a line segment) and each edge is either coloured blue or red or left uncoloured. Find the smallest value of n such that whenever exactly n edges are coloured the set of coloured edges necessarily contains a triangle all of whose edges have the same colour.

Soln. If three edges are not coloured, then the three edges are either idependent, form a triaangle, form a path or form a star. In each case, the coloured edges contained a K_{6}. Thus there is a monochromatic triangle. If there are uncloured edges, then the following example shows that it is possibld that there are no monochromatic triangles. Label the vertices
$a_{i}, b_{i}, i=1,2,3,4$ and x. Leave the edges $a_{1} a_{3}, a_{2} a_{4}, b_{1} b_{3}, b_{2} b_{4}$ uncoloured. Coloured the following edges red:

$$
\begin{gathered}
x a_{i}, \quad i=1,2,3,4 \\
b_{1} b_{3}, b_{1} b_{4}, b_{2} b_{3}, b_{2} b_{4} \\
a_{1} b_{1}, a_{1} b_{2}, a_{2} b_{1}, a_{2} b_{2} \\
a_{3} b_{3}, a_{3} b_{4}, a_{4} b_{3}, a_{4} b_{4}
\end{gathered}
$$

The remaining edges are coloured blue.
4. In the plane let C be a circle, L a line tangent to the circle and M a point on L. Find the locus of all points P with the folloiwng property:
there exist two points Q, R on L such that M is hte midpoint of $Q R$ and C is the incribed circle of triangle $P Q R$.

Soln. Consider any triangle $A B C$ with incircle Γ and excircle Γ^{\prime} which touches the side $B C$ externally. If X and Y are the points of where $B C$ touches the incircle and excircle, respecitvely. We have the following:
(1) $C Y=B X=s-A C$, where s is the semiperimater of $A B C$. This follows from the fact that $A B+B Y=A C+C Y$ and $A B+B Y+A C+C X=2 s$. (2) It follows from (1) that the midpoint of $B C$ and $X Y$ are the same.
(2) If $X Z$ is a diameter of the incircle, then the homothety with centre A that takes the incircle to the excircle takes Z to Y.

Now we solve the problem: Let X be the point where L touches the circle C and $X Z$ be a diameter of C. Also let Y be the point on L which is symmetric to X with respect to M. We claim that the locus is the open ray on the line $Y Z$ emanating away from the circle.

If P is point with the desired property, then the homothety with centre at P taking the incircle C of $P Q R$ to its excircle takes Z to Y. Thus P lies on the open ray.

Conversely, any point on the open ray has the desired property.
5. Let S be a finite set of points in three-dimensional space. Let S_{x}, S_{y}, S_{z} be the sets consisting of the orthogonal projections of the points of S onto the $y z$-plane, $z x$-plane, $x y$-plane respectively. Prove that

$$
|S|^{2} \leq\left|S_{x}\right|\left|S_{y}\right|\left|S_{z}\right|
$$

where $|A|$ denotes the number of elements in the finite set set A. (Note: the orthogonal projection of a point onto a plane is the foot of the perpendicular from the point to the plane).

Soln. For each (i, j) let $S_{i j}$ be the set of points of the type (x, i, j), i.e., the set of points that project to (i, j). Then

$$
S=\cup_{(i, j) \in S_{x}} S_{i j}
$$

By Cauchy's inequality,

$$
\left|S_{x}\right| \sum_{(i, j) \in S_{x}}\left|S_{i j}\right|^{2} \geq|S|^{2} .
$$

Let $X=\cup_{(i, j) \in S_{x}} S_{i j} \times S_{i j}$. Then $|X|=\sum_{(i, j) \in S_{x}}\left|S_{i j}\right|^{2}$. The map $f: X \rightarrow S_{y} \times S_{z}$ defined by $f\left((x, i, j),\left(x^{\prime}, i, j\right)\right)=((x, i),(x, j))$ is certainly injective. So $|X| \leq\left|S_{y}\right|\left|S_{z}\right|$.

Second soln. First we assume that all the points of S lie on a plane prallel to the $x y$-plane. In this case, we have $\left|S_{x}\right|\left|S_{y}\right| \geq|S|^{2}$. But $\left|S_{z}\right| \geq 1$ so the result holds.

So we assume that the result holds for the case where the points of S lie on at most n different planes parallel to the $x y$-plane. Consider the case where the points lie on $n+1$ different planes. Find a plane, parallel to the $x y$-plane, which divides the points of S into two nonempty parts T, U, but itself does not contain any points of S. Then $|S|=|U|+|T|$, $\left|U_{x}\right|+\left|T_{x}\right|=S_{x}$ and $\left|U_{y}\right|+\left|T_{y}\right|=\left|S_{y}\right|$ and $\left|U_{z}\right|,\left|T_{z}\right| \leq\left|S_{z}\right|$. By the induction hypothesis, we have

$$
\begin{aligned}
|S| & =|U|+|T| \\
& \leq\left(\left|U_{x}\right|\left|U_{y}\right|\left|U_{z}\right|\right)^{1 / 2}+\left(\left|T_{x}\right|\left|T_{y}\right|\left|T_{z}\right|\right)^{1 / 2} \\
& \leq\left|S_{z}\right|^{1 / 2}\left(\left(\left|U_{x}\right|\left|U_{y}\right|\right)^{1 / 2}+\left(\left|T_{x}\right|\left|T_{y}\right|\right)^{1 / 2}\right) \\
& \leq\left|S_{z}\right|^{1 / 2}\left(\left|U_{x}\right|+\left|T_{x}\right|\right)^{1 / 2}\left(\left|U_{y}\right|+\left|T_{y}\right|\right)^{1 / 2} \\
& =\left(\left|S_{x}\right|\left|S_{y}\right|\left|S_{z}\right|\right)^{1 / 2}
\end{aligned}
$$

6. For each positive integer $n, S(n)$ is defnied to be the greatest integersuch that, for every positive integer $k \leq S(n), n^{2}$ can be written as the sum of k positive square integers.
(a) Prove that $S(n) \leq n^{2}-14$ for each $n \geq 4$.
(b) Find an integer n such that $S(n)=n^{2}-14$.
(c) Prove that there are infinitely many integers n such that $S(n)=n^{2}-14$.

Soln. (a) From $n^{2}=1+1+\cdots+1$, we see that n^{2} can be written as a sum of n^{2} squares. We can combine 4 ones to get $2^{2}, 9$ ones to get 3^{2}, etc, to reduce the number of squares by $3,6,8,9,11,12$, but bot 13 . Thus $s(n) \leq n^{2}-14$.
(b) We'll show that 169 can written as a sum of t squares, $t=1,2, \ldots, 155$.

First $169=9+4+4+152 \times 1$ is a sum of 155 squares. By grouping 4 ones into a 4 , we can get $t=155,152, \ldots, 41$. By group 4 fours into 16 , we can get $t=38,35, \ldots, 11$. By group 4 sixteens into 64 , we get $t=8,5$. Of course $t=2$ is obtained by $5^{2}+12^{2}$.

Next we start with $169=5 \times 4+149 \times 1$ as a sum of 154 squares. Group as before we get $t=154,151, \ldots, 7$. For $t=4$, we can use $5^{2}+4^{2}+8^{2}+8^{2}$.

Next we start with $169=9+9+151 \times 1$ as a sum of 153 squares. Group as before we get $t=153,150, \ldots, 9$. Next we use $169=3^{2}+4^{2}+12^{2}=4 \times 2^{2}+2^{2}+12^{2}$ TO GET $t=3,6$. The list is now complete.

Alt: One such n is 13 . (In fact this is the smallest as it it is the smallest numberthat can be written as the sum of 2 and 3 squares.)

$$
169=13^{2}=5^{2}+12^{2}=3^{2}+4^{2}+12^{2}=5^{2}+4^{2}+8^{2}+8^{2}=3^{2}+4^{2}+4^{2}+8^{2}+8^{2}
$$

Using the fact that

$$
\begin{equation*}
(2 r)^{2}=r^{2}+r^{2}+r^{2}+r^{2} \tag{*}
\end{equation*}
$$

and

$$
169=3^{2}+4^{2}+4^{2}+8^{2}+8^{2}
$$

we can write 169 as a sum of $3 t+2,1 \leq t \leq 53$. Replacing 3^{2} by $2^{2}+2^{2}+1$ in the above, we can also write 169 as a sum of $3 t+2,2 \leq t \leq 54$, squares. Using $169=3^{2}+4^{2}+12^{2}$ and $(*)$ again, we can write 169 as the sum of $3 t, 1 \leq t \leq 11$, squares. Moreover in the last sum, the summands consists of 16 ones and 17 nines. Now use the $3^{2}+3^{2}+3^{2}+1=7 \times 2^{2}$, we can write 169 as a sum of $3 t, 12 \leq t \leq 16$. In the final sum, the summnads consists of 11 ones, 35 fours and 2 nines. The fours and now be broken up using ($*$) again to obtain sums of $3 t, 17 \leq t \leq 51$. The list is now complete.
(c) Let n be a number such that $S\left(n^{2}\right)=n^{2}-14$. We claim that $2 n$ also has the property. If $n^{2}=a^{2}+b^{2}+\cdots$, then $(2 n)^{2}=(2 a)^{2}+(2 b)^{2}+\cdots$. splitting each even squares as before, we see that $(2 n)^{2}$ be written as a sum of t squares, $1 \leq t \leq(2 n)^{2}-56$. Since $4 n^{2}>169$, we can use the grouping described above to get all the representations from $4 n^{2}-55$ to $4 n^{2}-14$.

