Russia, July 1992.

1. Find all integers a, b, c with 1 < a < b < c such that (a - 1)(b - 1(c - 1)) is a divisor of abc - 1.

Soln. Write x = a - 1, y = b - 1 and z = c - 1. The problem is equivalent to: Find all integers x, y, z with 0 < x < y < z such that xyz is a divisor of xyz + xy + yz + xz + x + y + z. Let R(x, y, z) = (xyz + xy + yz + xz + x + y + z)/(xyz). Since R(x, y, z) is an integer, x, y, z are either all even or all odd. Also

$$R(x, y, z) = 1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{xy} + \frac{1}{xz} + \frac{1}{yz}.$$

If $x \geq 3$, then

$$1 < R(x, y, z) \le R(3, 5, 7) < 2$$

which is impossible. If x = 2, then

$$1 < R(x, y, z) \le R(2, 4, 6) < 3$$

and so R(2, y, z) = 2. This implies

$$(y-3)(z-3) = 11$$

which gives y = 4, z = 14.

If x = 1, then

$$1 < R(x, y, z) \le R(1, 3, 5) < 4.$$

If R(1, x, y) = 2, then 2y + 2z + 1 = 0 which is impossible. If R(1, x, y) = 3, then

$$(y-2)(z-2) = 5.$$

Thus y = 3, z = 7. So there are two possible solutions

$$(a, b, c) = (3, 5, 15), (2, 4, 8)$$

It is easy to check that both are indeed solutions.

2. Let \mathbb{R} denote the set of all real numbers. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x^2 + f(y)) = y + f(x)^2 \quad \text{for all} \quad x, y \in \mathbb{R}.$$
(1)

Soln. Let f(0) = s and put x = 0 in (1),

$$f(f(y)) = y + s^2$$
 for all $y \in \mathbb{R}$. (2)

Put y = 0 in (1),

$$f(x^2 + s) = f(x)^2 \quad \text{for all} \quad x \in \mathbb{R}.$$
 (3)

Put x = 0 in (3),

$$f(s) = s^2 \tag{4}$$

Add (3) and (4),

$$s^{2} + f(x^{2} + s) = f(x)^{2} + f(s)$$
 for all $y \in \mathbb{R}$. (5)

Apply f to both sides and use (2), (3), (4),

$$x^2 + s + s^4 = s + (x + s^2)^2 \quad \text{for all} \quad x \in \mathbb{R}$$

This gives f(0) = s = 0. Thus, from (2), (3),

$$f(f(x)) = x, \quad f(x^2) = f(x)^2 \quad \text{for all} \quad x \in \mathbb{R}.$$
 (6)

The latter implies that $f(x) \ge 0$ if $x \ge 0$. If f(x) = 0 for some $x \ge 0$, then

$$0 = f(x)^{2} = f(x^{2}) = f(x^{2} + f(x)) = x + f(x)^{2} = x.$$

Thus

$$f(x) > 0 \quad \text{for all} \quad x > 0. \tag{7}$$

Replace y by f(y) and x by \sqrt{x} , we have

$$f(x+y) = f(x) + f(y) \quad \text{for all} \quad x > 0, y \in \mathbb{R}.$$
(8)

Now if x > y, then

$$f(x) = f((x - y) + y) = f(x - y) + f(y) > f(y).$$

Suppose there exists x such that f(x) > x, then x = f(f(x)) > f(x), a contradiction. Suppose there exists y such that f(y) < y, then y = f(f(y)) < f(y), again impossible. Thus f(x) = x for all x. This is indeed a solution.

3. Consider nine points in sapce, no four of which are coplanar. Each pair of points is joined by an edge (that is, a line segment) and each edge is either coloured blue or red or left uncoloured. Find the smallest value of n such that whenever exactly n edges are coloured the set of coloured edges necessarily contains a triangle all of whose edges have the same colour.

Soln. If three edges are not coloured, then the three edges are either idependent, form a triaangle, form a path or form a star. In each case, the coloured edges contained a K_6 . Thus there is a monochromatic triangle. If there are uncloured edges, then the following example shows that it is possible that there are no monochromatic triangles. Label the vertices

2

 $a_i, b_i, i = 1, 2, 3, 4$ and x. Leave the edges $a_1a_3, a_2a_4, b_1b_3, b_2b_4$ uncoloured. Coloured the following edges red:

$$xa_i, \quad i = 1, 2, 3, 4$$

$$b_1b_3, b_1b_4, b_2b_3, b_2b_4, a_1b_1, a_1b_2, a_2b_1, a_2b_2, a_3b_3, a_3b_4, a_4b_3, a_4b_4.$$

The remaining edges are coloured blue.

4. In the plane let C be a circle, L a line tangent to the circle and M a point on L. Find the locus of all points P with the following property:

there exist two points Q, R on L such that M is here midpoint of QR and C is the incribed circle of triangle PQR.

Soln. Consider any triangle ABC with incircle Γ and excircle Γ' which touches the side BC externally. If X and Y are the points of where BC touches the incircle and excircle, respectively. We have the following:

(1) CY = BX = s - AC, where s is the semiperimater of ABC. This follows from the fact that AB + BY = AC + CY and AB + BY + AC + CX = 2s. (2) It follows from (1) that the midpoint of BC and XY are the same.

(2) If XZ is a diameter of the incircle, then the homothety with centre A that takes the incircle to the excircle takes Z to Y.

Now we solve the problem: Let X be the point where L touches the circle C and XZ be a diameter of C. Also let Y be the point on L which is symmetric to X with respect to M. We claim that the locus is the open ray on the line YZ emanating away from the circle.

If P is point with the desired property, then the homothety with centre at P taking the incircle C of PQR to its excircle takes Z to Y. Thus P lies on the open ray.

Conversely, any point on the open ray has the desired property.

5. Let S be a finite set of points in three-dimensional space. Let S_x , S_y , S_z be the sets consisting of the orthogonal projections of the points of S onto the yz-plane, zx-plane, xy-plane respectively. Prove that

$$|S|^2 \le |S_x||S_y||S_z|$$

where |A| denotes the number of elements in the finite set set A. (Note: the orthogonal projection of a point onto a plane is the foot of the perpendicular from the point to the plane).

Soln. For each (i, j) let S_{ij} be the set of points of the type (x, i, j), i.e., the set of points that project to (i, j). Then

$$S = \cup_{(i,j) \in S_x} S_{ij}$$

3

By Cauchy's inequality,

$$|S_x| \sum_{(i,j)\in S_x} |S_{ij}|^2 \ge |S|^2.$$

Let $X = \bigcup_{(i,j)\in S_x} S_{ij} \times S_{ij}$. Then $|X| = \sum_{(i,j)\in S_x} |S_{ij}|^2$. The map $f: X \to S_y \times S_z$ defined by f((x,i,j), (x',i,j)) = ((x,i), (x,j)) is certainly injective. So $|X| \le |S_y||S_z|$.

Second soln. First we assume that all the points of S lie on a plane prallel to the xy-plane. In this case, we have $|S_x||S_y| \ge |S|^2$. But $|S_z| \ge 1$ so the result holds.

So we assume that the result holds for the case where the points of S lie on at most n different planes parallel to the xy-plane. Consider the case where the points lie on n+1 different planes. Find a plane, parallel to the xy-plane, which divides the points of S into two nonempty parts T, U, but itself does not contain any points of S. Then |S| = |U| + |T|, $|U_x| + |T_x| = S_x$ and $|U_y| + |T_y| = |S_y|$ and $|U_z|, |T_z| \le |S_z|$. By the induction hypothesis, we have

$$S| = |U| + |T|$$

$$\leq (|U_x||U_y||U_z|)^{1/2} + (|T_x||T_y||T_z|)^{1/2}$$

$$\leq |S_z|^{1/2}((|U_x||U_y|)^{1/2} + (|T_x||T_y|)^{1/2})$$

$$\leq |S_z|^{1/2}(|U_x| + |T_x|)^{1/2}(|U_y| + |T_y|)^{1/2}$$

$$= (|S_x||S_y||S_z|)^{1/2}$$

6. For each positive integer n, S(n) is defined to be the greatest integersuch that, for every positive integer $k \leq S(n)$, n^2 can be written as the sum of k positive square integers.

- (a) Prove that $S(n) \le n^2 14$ for each $n \ge 4$.
- (b) Find an integer n such that $S(n) = n^2 14$.
- (c) Prove that there are infinitely many integers n such that $S(n) = n^2 14$.

Soln. (a) From $n^2 = 1 + 1 + \dots + 1$, we see that n^2 can be written as a sum of n^2 squares. We can combine 4 ones to get 2^2 , 9 ones to get 3^2 , etc, to reduce the number of squares by 3, 6, 8, 9, 11, 12, but bot 13. Thus $s(n) \le n^2 - 14$.

(b) We'll show that 169 can written as a sum of t squares, t = 1, 2, ..., 155.

First $169 = 9 + 4 + 4 + 152 \times 1$ is a sum of 155 squares. By grouping 4 ones into a 4, we can get $t = 155, 152, \ldots, 41$. By group 4 fours into 16, we can get $t = 38, 35, \ldots, 11$. By group 4 sixteens into 64, we get t = 8, 5. Of course t = 2 is obtained by $5^2 + 12^2$.

Next we start with $169 = 5 \times 4 + 149 \times 1$ as a sum of 154 squares. Group as before we get t = 154, 151, ..., 7. For t = 4, we can use $5^2 + 4^2 + 8^2 + 8^2$.

Next we start with $169 = 9 + 9 + 151 \times 1$ as a sum of 153 squares. Group as before we get $t = 153, 150, \ldots, 9$. Next we use $169 = 3^2 + 4^2 + 12^2 = 4 \times 2^2 + 2^2 + 12^2$ TO GET t = 3, 6. The list is now complete.

Alt: One such n is 13. (In fact this is the smallest as it it is the smallest number that can be written as the sum of 2 and 3 squares.)

$$169 = 13^2 = 5^2 + 12^2 = 3^2 + 4^2 + 12^2 = 5^2 + 4^2 + 8^2 + 8^2 = 3^2 + 4^2 + 4^2 + 8^2 + 8^2.$$

Using the fact that

$$(2r)^2 = r^2 + r^2 + r^2 + r^2 \tag{(*)}$$

and

$$169 = 3^2 + 4^2 + 4^2 + 8^2 + 8^2$$

we can write 169 as a sum of 3t + 2, $1 \le t \le 53$. Replacing 3^2 by $2^2 + 2^2 + 1$ in the above, we can also write 169 as a sum of 3t + 2, $2 \le t \le 54$, squares. Using $169 = 3^2 + 4^2 + 12^2$ and (*) again, we can write 169 as the sum of 3t, $1 \le t \le 11$, squares. Moreover in the last sum, the summands consists of 16 ones and 17 nines. Now use the $3^2 + 3^2 + 3^2 + 1 = 7 \times 2^2$, we can write 169 as a sum of 3t, $12 \le t \le 16$. In the final sum, the summads consists of 11 ones, 35 fours and 2 nines. The fours and now be broken up using (*) again to obtain sums of 3t, $17 \le t \le 51$. The list is now complete.

(c) Let n be a number such that $S(n^2) = n^2 - 14$. We claim that 2n also has the property. If $n^2 = a^2 + b^2 + \cdots$, then $(2n)^2 = (2a)^2 + (2b)^2 + \cdots$ splitting each even squares as before, we see that $(2n)^2$ be written as a sum of t squares, $1 \le t \le (2n)^2 - 56$. Since $4n^2 > 169$, we can use the grouping described above to get all the representations from $4n^2 - 55$ to $4n^2 - 14$.