Training problems 27 March 2003

1. Find all integer solutions in z and ¥ of the equation 3 + 27xzy + 2009 = y3.

Solution. Let y = z + a. Then the equation becomes
(27 — 3a)z? + (27a — 3a*)z — a® + 2009 = 0.
As a quadratic equation in x, its discriminant is
(27a — 3a?)? — 4(27 — 3a)(—a® + 2009) = —3(a — 14)(a — 9)(a® + 41a + 574).

The factor a? + 41a + 574 is always positive. Therefore the equation has integer solution
in z only when a = 9, 10, 11, 12, 13, 14. When a = 9, the equation becomes —3x? — 30z +
1009 = 0 which has no integer solution in x. Similarly for a = 10,11,12,13, the resulting
quadratic equations do not give integer solution in x. When a = 14, the equation becomes
—15(x+7)2=0. Thusz = -7,y = a+x = 14— 7 = 7 is a solution to the given equation.

2. Let ABC be a given triangle, and M, N, and P be arbitrary points in the interiors of
the line segments BC,C' A, and AB respectively. Let the lines AM, BN, and CP intersect
the circumcircle of ABC in points @), R, and S respectively. Prove that
AM BN CP
+ + >9.
M@ NR PS

Solution. Let F be the foot of the perpendicular from A onto BC. If )" is the midpoint of
the arc BC and A’ is the midpoint of BC, it is clear that AM/MQ = AF/M'Q > AF/A'Q’.

Therefore, the minimum value of ‘1?4—% + ﬁ—% + g—g will be obtained uniquely where @, R, S

are the midpoints of the arcs BC,CA and AB respectively. Thus, we will henceforth
assume that @, R, S are positioned so that AQ, BR, QS are the angle bisectors of angles
A, B, C respectively.
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We know that the angle-bisector AQ cuts the side BC' of length a in the ratio ¢ : b so
BM = ca/(b+ c) and MC = ba/(b+ c). Therefore,

AM  AM? AM?  AMZ?(b+c)?
MQ AM-MQ BM-MC a2bc

=== (%)
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From Stewart’s Theorem,

AMC +*BM —aBM - MC — aAM? = 0.
It follows that
ca’b

AM? = pe — 220
‘Tt

Substituting this into (*), we have

AM _ (bte)
MQ \ a '

BN_ a-+c 2_1 CP_ a+b 2_1
NR b PSS c '
Thus we have

AM BN CP b+ c 2 a-+tc 2 a-+b 2
> - — .
MQ+NR+PS_<G)+( b)+( c) 3
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Similarly,

By the convexity of f(z) = x*, we have

b+c\> a+c\’ a+b\> _1(b+c a+c a+b\"
+ + > = + + .
a b c 3 a b c
Also, using AM > GM, and the inequality = + 1/z > 2 for z > 0, we get

AM BN CF  1ifb, a +(Z+3)+ LAY
M@ NR PS 3|\a b a c b ¢ -7

Equality holds if and only if @ = b = ¢; that is to say, if and only if triangle ABC is
equilateral and M.N.P are the midpoints of the sides.

3. Does there exist a convex pentagon, all of whose vertices are lattice points in the zy-
plane, with no lattice point in the interior? (A point in the xy-plane is called a lattice
point if it has integer coordinates.)

Solution. The answer is No. A convex lattice pentagon must have an interior lattice
point. To see this, note that every lattice point (x,y) belongs to one of the four classes
Koo, Ko1, K19 and K71, where the index pair 75 is determined by taking : =z and j =y
modulo 2. A convex lattice pentagon has five vertices, so two of them, say P and @) belong
to the same class, which implies that their midpoint R is also a lattice point. If P and @)
are endpoints of a diagonal of the pentagon, then R is an interior lattice point. If P and
QQ are the endpoints of an edge, say edge AB of the pentagon ABCDE, we continue by
considering the convex lattice pentagon ARC DFE and so on. This case cannot continue
indefinitely, because if so, there would be an infinite sequence of distinct lattice points
within a finite region of the coordinate plane, which is not true.
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4. A piece of cardboard in the shape of a square is to be cut into n acute- angled triangles.
Find the smallest n for which this can be done. Show at least one way to do it this
minimum n.

Solution. Suppose the square has been cut into n acute-angled triangles. Form a graph
whose vertices are the vertices of the square and the vertices of the triangles. Any two
consecutive vertices on a side of a triangle or on a side of a square are joined by an edge.
There are no other edges. There are three types of vertices:

(a) Vertices of the square: These are of degree at least 3.

(b) Vertices which are in the interior of a side of a triangle or the square. These are
of degree at least 4. Denote the number of vertices of these type by b

(c) Vertices of the triangles which do not lie in the interior of a side. These are of
degree at least 5. Denote the number of vertices of these type by ¢

Let m be the number of edges. Then
2m > 4 x 3 + 4b + be.
But 2m =4 4 3n + b. Euler’s formula gives
4+b+c)+(n+1)—m=3, or m=b+c+n+3.
Substitute this into the inequality, we get ¢ > 2. Fach vertex of type (c) is associated with

at least 5 triangles and the triangles associated to 2 vertices can have a overlap of at most
2. Thus we get n > 8. See the picture below for a construction which gives n = 8.
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5. (Prize Problem) Let x be a positive rational number. Prove that there exist a unique
set of integers a1, as ..., ag, with 0 < a, <n —1 for n > 1 such that

. a9 as Qg
l‘—a1+a+§+"'+y-

Show also that there exist a set of integers, 10% < b; < by < - - - b, such that



Solution. First note that x can be written in the form m/n!, where m,n are positive
integers. We shall prove by induction on n that

mo as an
E—a1+§+-~+m
where 0 < aq; <i—1fori > 2. Forn =1, ag = m, and a; = 0 for ¢ > 1 works. Now
assume that it holds for some n. Let

m=(n+1)qg+r, 0<r<n+1

Then
m q r

CF R TR CE

The result then follows by applying the induction hypothesis on ¢/n! and putting r = agy1.
Next we prove uniqueness. Suppose

as  as ag by b3 b
T=a bbb = bbb g
Then
ar = b = x(k!) (mod k)

and it follows that ay = bg. By considering = — (ax/k!), we can show that ap_; = bg_1.
Thus uniqueness follows.

To prove the second part we first note that if a; > 0, then a; | ¢! and thus a;/i! is
the reciprocal of a positive integer. Moreover, (i — 1)! < i!/a; <i!l. Thus all the positive
integers are different.

Now if x < 1, then a; = 0 and so x can be expressed as the sum of reciprocals of
different positive integers.

Now we consider the general case. Let x be any positive rational number and m be
an integer > 10° such that m > 1/x and n be the largest integer > m such that

1
> —+ —+ + —
m m+1 n
Let
1 1 1
y: _— —_—— — — t ot e — —
m m+1 n

Then 0 <y < 1/(n+1). Thus y can be written as a sum of reciprocals of different positive
integers:

Since 1/¢; <y <1/(n+1), ¢; > (n+1). Thus

1 1 1 1 1
r=—4 -4+ 4+ 4 4.4 =
m m+1 n o q q;



as required.

6. Given a segment AB of length 1, define the set M of points as follows: A, B € M and if
X,Y € M, then M contains the point Z in the segment XY for which YZ = 3XZ. Prove
that M does not contain the midpoint of AB.

Solution. Represent A by 0 and B by 1 on the number line. Denote by M,, the set of points
of the segment AB obtained from A, B by not more than n iterations. It can be proved
by induction that M,, consists of all points in [0, 1] represented by 3k/4™ and (3k — 2)/4™,
where k is an integer. Thus M consists of numbers of the form 3k/4™ and (3k —2)/4™. To
prove our assertion, we need to show that 1/2 cannot be expressed in this form. Suppose
1/2 = 3k/4™, then 4™ = 6k which has no solution. Suppose 1/2 = (3k — 2)/4™, then
6n = 4™ 4+ 4 which has no solution. Thus 1/2 ¢ M.

2nd soln (Joel): Represent each point by a coordinate in the set [0, 1] with A = 0,
B = 1. For any two points x,y € M, the point (3z + y)/4 € M. Now take decimal
representations. Note that each point is a finite decimal. It’s easy to see that the digit
sum of the decimal representation = Oorl (mod 3) for any point in M since it initially
holds for A, B and if it holds x,y then it also holds for (3z + y)/4. Since midpoint of AB
has decimal representation of 0.5, it is not in M.

7. (Prize Problem) Let aj,as9,...,a,, n > 1, be real numbers > 1 and A = 1+ a; +
-+ 4 ap. Define zi, 0 < k <n by

Prove that

(Hint: Let yr = 1/xy)
Solution. Let y; = 1/zy.

yafl. From y,_1 > 1, ap > 1 we obtain

<ap+ .
Yk—1 Yk—1

1
( —1)(ak—1)§0 & 14
Yk—1

< ap + o . We have

n n—1
Z‘”“Lylo*Zy —A+Z—<A+Z—.
k=1 k=1

So yr =

DS B

Let t =31 _, 1/yk. Then > 1, yx, > n?/t. So for t > 0,

yk 1 yk

nt< A+t o P+ At—-n2>0

—A+ \/m 2n?
2 A+VAT a2
S 2n? B n2A
~ A+ A+ (2n2/A)  n?+ A%
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