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Take Home Test Solutions

1. Determine which of the numbers

20011111 4+ 1 20012222 4 1
20012222 11 MY 90013333 11

is larger.

Let a = 2001, A = %L and B = %+L. Then,

A (a+1)(@*+1) a*+(a®+a)+1 - a* +2a® + 1 _1
B (a2+1)2 (a2 +1)2 (a2 +1)2

Here, the last inequality uses AM > GM. Alternatively,

a® + a — 2a?
A—-B= > 0.
(a? + 1)@ 1 1)

2. Determine, with proof, the set of all positive intergers that cannot be represented in the

form ¢ + ‘gT*% for some positive integers a and b.
Let A denote the given expression. Then A = Qgé’gff)b implies b | a. Let a = mb, m € N.
Then A =m+ T%Z“il = 2m—7:T_11 impliesb+1|m—1. Let m—1=n(b+1),n>0,n € Z.

Then A =n(20+1)+2. If n =0, A=2. If n =1, then by varying b, we get A =5,7,....
We also note that A # 0,3. We are left with even numbers z > 2. A = z if and only if
x—2=mn(2b+1) if and only if z — 2 is a multiple of some odd prime. Thus the required
set is {1,2F +2:k € N}.

3. Let z,y, z be positive numbers such that 22 + y? + 22 = 1. Prove that

X z T
Wi TS
z x Yy

Let S be the LHS. We shall find the smallest value of S.

>+t 422 42=3.

When = =y = x = 1/1/3, equality holds.



4. Let A and B be two sets of N consecutive integers. If N = 2005, is it possible to arrange
A and B into sequences A = (a1, ag,...,an), B = (b1,ba,...,bx) in some order (the orders
for A and B may be different) so that the sequence of sums (a; + by, a2 + be,...,any + by)
is a sequence of N consecutive integers? What if N = 20067

Let A={a+1,a+2,...,a+ N} and B ={b+1,b+2,...,b+N}. Suppose the arrangement
is possible so that (a1 + b1,a2 +be,...,an +by) = (m+1,m+2,...,m+ N). Then

a+14---+a+N+b+1l+---+b+N=m+1+---+m+N

N(a—i—b)%—N(NQ—Fl):Nm
N+1
(a+b)+T+:m.

Thus, N must be odd. Hence the arrangement is impossible if N = 2006. If N = 2005,
arrange

Aas a+1, a—+ 3, ..., a+2005 a+ 2, a4+ 4, ..., a4+ 2004
Bas b41003, b+1002, ..., b+1, b+ 2005, b+ 2004, ..., b+ 1004.

5. Let k be an odd positive integer. If (2 + \/g)k = m + ny/3, where m and n are positive
integers, show that m — 1 is a perfect square.

Write the odd positive integer k as 2j — 1 and let (2 + v/3)%~! = m; + n;v/3. We first
obtain a recurrence relation for m;. Note that

M1+ njr1V3 = (my +n;v/3)(2 + V3)% (1)

Hence
mji1 = Tm; +12n; and mnji1 = 4m; + Tn;.

Therefore, m;yo = 97m; + 168n;. Eliminating n; using this and equation (1) gives
mji2 = 14mj+1 — m;.

Of course, m; = 1, mg = 26. Define a sequence (¢;) by ¢ = 1, ¢ = 5 and ¢j12 = 4¢j1 —¢j.
We wish to show that m; = cj2~ +1 for all j. In the course of doing this, we need to verify first

Claim. ¢, 4 ¢f = 4¢j ¢ + 6.
This is proved by induction. It holds clearly for j = 1. Suppose it holds for some j. Then

2 2 402 2
Cjy2 + €1 = 17651 + ¢ — 8¢jpi1¢)
152 2
= 15Cj+1 —c+ 12.

Also,

4cjiocit1 +6 = 16032»4_1 —4cjpi1c;+6

=15¢5,, — ¢} +12.



This completes the proof of the claim by induction.

Now we will show that m; = c? 4+ 1 by induction on j. For j = 1, 2, this is obviously true.
Now

Gya+1=16c7, —8cjpic;+cf+1
= 140?“ — c? + 13 Dby the claim
= 14(mjy1 — 1) — (m; — 1) + 13 by the inductive hypothesis

= 14mj+1 —mj; = Mj42.

6. Find all functions f : N — N such that (1) if x < gy, then f(x) < f(y) and, (2)
f(y(f(z)) = 2?f(zy) for all z,y € N. Here N denotes the set of all positive integers.

Note that from (1), x = y if f(x) = f(y) (the function is injective). Put y = 1 in (2). Then
f(f(2)) = 22f(x). Put y = f(2) in (2). Then

FUf(2)f (@) = 2 f(xf(2)) = 2?22 f(22) = f(z2).

Thus f(2)f(z) = f(zz). We claim that f(m) = m? for all m. Suppose not. These is some
m so that f(m) # m2.

Case 1. f(m) > m?.
Then m2f(m) = f(f(m)) > f(m?) = (f(m))?. Hence m? > f(m), a contradiction.

Case 2. f(m) < m?.
Then m2f(m) = f(f(m)) < f(m?) = (f(m))?. Hence m? < f(m), a contradiction.

7. The triangle ABC has CA = CB. P is a point on the circumcircle of triangle ABC
lying on the arc between A and B not containing C. D is the foot of the perpendicular
from C to PB. Show that PA+ PB =2 PD.

C

P
Extend PB beyond B to a point @ so that BQ = PA. Since BQ) = PA, CB = CA and
JCAP = ZCBA, the triangles CAP and C'B(Q are congruent. Thus Z/CPA = ZCQB.
The angles ZCPA and ZC PB are subtended by chords of equal length and hence are equal.
Therefore, Z/CPB = ZCQB. It follows that the triangle CPQ is isoceles with C'P = CQ.
Hence 2- PD = PQQ = PB+ BQ = PB + PA.

8. In triangle ABC, E is the foot of the perpendicular from B onto AC, D is the foot of
the perpendicular from F onto BC, and F' is the midpoint of AB. Suppose AD, BE and
CF intersect at a common point H. Prove that ZABC = 90°.



Solution By Menelaus’ theorem, we have

AE/EC = BD/CD. As ACDE is similar B

to AEDB, we have AE = BD(EC/CD) =

BD(BE/ED). Hence, AE/BE = BD/ED. D

Also, ZAEB = /BDE. Thus, AAEB is sim-

ilar to ABDE. Therefore, /ABC = /ABE+

/EBD = /BED + ZEBD = 90°. 4 C

(Note that H must lie inside AABC as C'F is a median.)

The converse of the problem is also true. That is: if ZABC = 90°, then AD, BE and
CF are concurrent. This can be seen as follows: Let C'F intersect BE and DE at H
and G respectively. Join AH and DH. Now, ZABC = 90° implies that AB is paral-
lel to ED so that ABFH is similar to EGH. Hence BF/BH = EG/EH. Therefore,
BA/BH = 2BF/BH = 2EG/EH = ED/FEH. That is AABH is similar to AEDH.
Therefore, A, H, D are collinear. Thus, AD, BE and CF are concurrent.

9. P is a point on the plane inside a convex quadrilateral ABCD. The bisectors of ZAPB,
/BPC, ZCPD and ZDPA meet the lines AB, BC, CD and DA at K,L, M and N re-
spectively. If KLM N is a parallelogram. Prove that PB = PD and PA = PC.

Solution Suppose K LM N is a parallelogram. The
angle bisector theorem implies that

AK BLCM DN  PAPBPCPD

KBLCMDNA PBPCPDDA
Suppose KN meets BD at ). Apply Menelaus’ the-
orem to to AABD and the line K NQ, we have

NAKBQD

Substituting this into the first equation, we have

DN AK BQ _

BLCM DQ _,

LCMDQB

By Menelaus’ theorem applied to ABCD and the points @, M, L, we see that Q, M, L are
collinear. That is KN meets LM at (), contradicting that fact that LM is parallel to K N.
Hence, KN, BD and LM are all parallel. Therefore, % = % = ]’3—% = %. That is
PB = PD. Similarly, PA = PC.



10. In the acute triangle ABC, let D be the foot of the perpendicular from A to BC, let E
be the foot of the perpendicular from D to AC, and let F' be a point on the line segment
DE. Prove that AF is perpendicular to BE if and only if FE/FD = BD/DC.

A

Solution Let G be the point on C'E such that

DG is parallel to BE. Then /ZEBD = Z/GDC.

Also EG/GC = BD/DC. Note that AADE is

similar to ADCE. 5

A\G
B h=""\¢

D

Then,

FE/FD = BD/DC
EG/GC = FE/FD

AADF is similar to ADCG
/DAF = /GDC

/DAF = /EBD

AF1BE.

111t

Take Home Test — Part 2

1. If x and y are integers, find the smallest positive integer a for which
5213z + 8421y = 2005002 + a

is possible.
Solution:

By Euclidean algorithm, we find that
ged(5213,8421) = 401.
Hence

20050024+ a =0 (mod 401)
= 24+a=0 (mod 401)
= a=-2 (mod 401).

So the smallest positive integer value for a is 401 — 2 = 399.

2. Find all positive integers p and ¢ such that



Solution:

3p(3q + 40) — 10(3q + 40) = —40?
(3p — 40)(3¢ + 40) = —40?
(40 — 3p)(3q + 40) = 40?

1 1 3

p q 40

qg—p 3
= — =

pq 40
= 3pg+40p —40q =0

40 402

= p(3q+40)—§(3q+40)+?:0
=
=

4

Since 40% = (23 x 5)2 = 26 x 52 and 3¢ + 40 > 40, (40 — 3p, 3¢ + 40) must be one of
the followings:

(1,1600), (2, 800), (4,400), (5, 320), (8, 200),

(10, 160), (16, 100), (20, 80), (25, 64), (32, 50).

Solving for integer values for (p, q), we have

(p,q) = (13,520), (12, 120), (10, 40), (8, 20), (5, 8).

. Show that the equation 1522 — 7y? = 9 has no solution in integers.
Solution:
If the equation has a solution in integer, then
1522 — 7y% =9
= —2=0 (mod 3)
= y=0 (mod 3).
Hence y = 3y; for some integer y;. This implies that
1522 — 7(3y1)2 =9
= 52 —21yf =3
= 222=0 (mod 3)
= =0 (mod 3).
Hence x = 3x1 for some integer x1. This implies that
15(3z1)% = 7(3y1)* =9
= 1528 Tyl =1
= —y2=1 (mod 3)
= y?=2 (mod 3).
The last congruence is impossible.

Hence the given equation has no solution in integers.



4. Show that if m < n, then 22" + 1 divides 22" — 1. Hence deduce that 22" + 1 and
22" 41 are relatively prime. Conclude that there are infinitely many primes.

Solution:

If m < n then n = m + k for some integer k£ > 1, so we have
92" _ 1 —92m2" _ | _ (22m + 1)<22M(2k71) _ 92m(2F-2) b2 1).

Hence 22" + 1 divides 22" — 1.
Let d = ged(22" + 1,22" + 1). By above, we have

22" +1=(22" —1)+2=1(22" +1) + 2 for some integer
= d|2 (since d|(2%" +1) and d|(2*" + 1))
= d=1lord=2
= d=1 (since 22" + 1 is odd)

Thus gcd(22m +1,22" + 1)=1,1ie. 22" 4+ 1 and 22" + 1 are relatively prime.

For any positive integer n, let p, be a prime divisor of 22" + 1. For any m,n with
n # m, we have p, # pn, since 22° + 1 and 22" + 1 are relatively prime. Hence
{p1,p2,p3 ...} is an infinite set of primes.



