
!--.. gain, it can be observed that '\'able 4 is an alternative 

form of Table fi. 

The readers rnav try to prove the duatsof thP- ahove b1o 

exam9les, namely, 

A i\ (BVC) = (l'J\ B) 1J (1\J \ C) 

and 
(l' (\B) I = A. i lj B I I 

~·.rhich are 0 1')ta.incft hy interchangincr v and 1\ • 

****************************** 

f.•Jhen G.!-~. Farav visited s. Pamanuj an he told !".i.m that the 

numbt~r of the taxi in ~·rhich he caMe, 17 29, lookec. rather uaattr
active. 'RaManujan imm~~diatelv denied this, saving that it '·•?:."' 

the least number \'!hid;. coul(1 he exnress0Cl as the RU1"'1 of t\vo 
~ ' ~·f~ ' 17?0 ~3 + 13:1A3+ ~ .. 3 CU .. en J.n t\vO' O.L: ;.erent ways ; that l.S r ·~. = J..e '· 
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EQUAL LIKELIHOOD AND INDEPENDENCE 

Louis R. Y. Chen 
Department of ~~athematics 
University of Singapore 

1. In traduction. r,;he notion of caual liJrelihoo<'1. is, in some 

seP..se, closely tierl ~"i th that of independenc!~ in th8 mheorv of 

Probability. Often this fact is Aither overlooks~ or insuf£ic · 

iently emnhasized in the teachiP.g of elementary con.rses. Thi 9 
... 

is perhaps :'lue to the difficulty .tn making the relation bet'I.\Teen 

the two notions nrecise at the level concernAd. ~ror.:rever, a qooc. 

understandinq of the relation is necAssarv in order to explain the 

equivalence of b~ro m8thods ~~rhich are often em?loye0 in the 

solutions of. a larsre number of ele!l'lentary oroblems. 

To illustratG the last point, consirer the :follor-'lina simPle 

example~ !'; fair coin is tossed, 21. fair ftie is rolle0. and a ball 

is dra~·m at rando!Yl from c>.n urn containing ? black ann 8 ,.•hite 

balls. h'hat is the probability of the event t!:at the coin falls 

heads, an even number a1:mears on the c1ie a.nr'l, a white hall is 

dra~·rn( 0ne mE;thocl. of solution is as folloNs ~ Since the sarnnle 
' 

soace consists of 2x6xlo = 120 equallv likelv outcomes (each of 

which can be represented by a trinle such as (Heac,S,hlack ball)) 

and the event consists of 1><3x8 = 24 outcon~s, it follows that 

the Probability is 24/120 = 1/5. Alternatively, one could first 

calculate the rrobabilities of the coin falling heads, of an 

( J.J ) 



. ... , 

even number appearing on the die and of a "'rhi te hall t>eing 

dral·m., \oJhich are 1/2, l/2 and 4/5 r8spectivcly. Then one 

could use independence to conclude that the nrobahility of 

the event is (1/2) x (1/2) x (4:/5) = 1/5. The two soluti.ons 

just discussed employ different concepts. It is not immediat

ely clear that they should be ecrui valent. Horeover, ,~rhat is 

the underlying sam~le S?ace in the second solution? 

The follo~..ring is an atternr;>t to answer these auestions in 

e leme ntary terms. Some basic knowledge of Probability ~ill 

·· ·b~ assumed. The relation betvmen eq\!al likelihoon and inde

pendence ~"ill be stated in two forms 1.vhich ~·,ill re proveCI as 

t~o th eorem~. In or~er to show that the usefulness nf the 

theorems is not confined to the present discussion, one of 

them ~,rill be a.nplie<" to ortain a simt?ler proof of an interesting 

lemma in [(! , P:O. 192 - 193. 

2. ."fi:qual l.ikeliho,o:d- and i ·n.de _pend.ence. 'lery often, th.e 

experimr:mt of interest cqnsists of a numher of other experirn~nts. 

Such an exneriment is a compound exD~riMcnt. In the above 

examT?le, the compound experiment consists of thrP-e experiments, 

namelv tossing a coin, rolling a die nnd dra'''inq a ball from 

an urn. Let n1, ... ,n be the sample suaces of n eiperiments, 
n . ' ' 

say "£1 , ••• , "(.. • The natural samT?le sPace of the compound 
n 

experiment consisting of these exp8rirnents (denoted by 

·Elx ••• X ch) is the Cartesian product nlx •• ox nn = { (Wt I ••• ,wn) = 

w. e: n. , i=l ,, ..• ,n}. .A.n event in the cornoounc. exoeriment l 1 ' - .. 

-61 X • o .>< -tn 1 \•lhich iS Of the . form Q e: • • .xA.{ • • .x Qn 1 Nhere . 
;. c 0 . 11 ..:3 t f . ' t +-h . t.n i t-1 - '· -;, 1s ca e u an r-::ven re err1.ng . o - ·· e 1. exper men_ 

-&i , i=l, .. o ,n. It :1.~ saic. to occur ·· if and only if Ai occurs 

in the i th expeximent ~i. T.n the present discussion, all 

saTilnle s"Ja.ces are assumed to be finitG, i.e. r.tll exoerirnents 

are assumecl. to have a finite number of outcomes. 

Let Pi be the probahility associate~ with the ex~eriMent 

{ . , i=:!.., ••• 1 n. ".'he ' cru(-:!Stion arises as to '"hether there exists 
. .J.. 

a prot-ability P associated with the compound experiment 

Cl X • o •X -~n 1 ,.,rhich haS thO fOllm.;ing r;>rOpertieS ~ 

( 2 ;·l) 
,......, 

p, (J'. ,) c p (1\;i) = A. Q • I i = 1, ,n I .._ . . 0 , 
1. 1. 1 1. 

and 
,. ··-

n 1"\ rv ,....,_, 
(2.2), p ( 1\ A.)= ·U· P(Ai) .,.. c. n. , i=l, . . . ,n , , 

i i::::il 1. 1.-1 
l . 

,........., 
i.~rhere l. i = l, ... ,n . . 

(12) 



The property (2~1) is essential in order that P is mnaningful, 

~Jhereas the oroperty ( 2. 2) sti;=>ulates the incependence cf 
.-:-v .-J 

ti.1 , ••• ,!- for anv A . :;. ~. , n . l. l. 
says that the experiments 

-!"1 FV 

i=l, •.• ,n. In a loose sense, (2.2) 

~1 , •.•• , £ are indeoenflent. t-loting 
n 

that (\A . = p. 1 x ••• x 
. 1 l. 

A and th c. t { ( w 1 , • • • , w ) } = { w 1 } x ••• x { tll } · r. n n ; 
~== 

one imrnediatelv se0.s that such a orobahilitv P does exist. 

::::nde·S!d, it is CJiven by 
n 

= . ~ lp . ( { w . } ) 1 
J.- ~ l. 

Furthermo~e, it is uniaue. ~he reader is advised to verif~ 

that the probahilitv P given ~v (?..3) is the onlv orobabllity 
- ~ A ( ) associated Ni th ln x .•• x · '~ , ~·rhich satisfies ( 2 .1) a11d 2. 2 • 

n 
The probahility P qiven by (2.3) is ealled the product probab-

ility of Plr···,Pn and is denot~d bv P 1 x ••• x P n 

A h h'l't · ·~ t h 'f 1.'f 't t~ 'b t e~ual pro .. a ... l. 1. y 1.s sal.~; o ... e un1. orm 1. a. _rl. u es " 

probabilities to all the outcomes in ' tbe associated samola 

space, i.e. all outcomes are ef!ually likely. Similarly, a _ 

random variable or a random vector is said to have a uniform 

distribution, if all its values have equal probabilities. ~he 

theorems ar8 nm•T stated and prov0.d as follm-1s: 

Theorem 2. i. I.et n 1 , ••• , n be samole soaces. If the 
n 

pr ohahility pi associa.ted\'-!itr.. ni is ' uniforrn, i=l1 ••• ,n, then 

th~ croduct cro~ahilitv P 1 x ••• xP associate~ with n1 x ••• xn · · n - n 
is . uniform. Conversely, if a prohabili ty P associated ~~i th 

. rl 1 · ••• · ·~ !". i ::· uni!:orm, then there exist unique prohabilities 

P~ · associc:.ted ~dth 0.., i=l, ••• ,n, such_ .. that P=P
1
1 ~?<· •• xPn' 1

• • 
l l 

~~1oreover each P~ ' must necessarily be 1.1ni form. l. . 

Proof. Lot 0. 1 consistc of ki outcomes, i=l, ••• ,n. 'J'he 

uniforrnitv of P. !~plies t~at 
~- l. ·-

w. £ 0.., 
~ 1. 

i= 1, ... ,n 

Thus for everv (wl, ••• ,w) £ . n 

P 1 x ... xP ({(w 1 , .••• ,w )}) 
· n n 

n n 

= p 1 x ••• xP ({w 1 }x .•• x{w }) 
n n 

n 

= Tf· P.({w.})- l/k1•••Jr 
il;" l 1 1 n 

T:t.is prov0. s the uniforMitv of P 1 x ••• xP 
n 

( 1.1) 

, . ~r.r~ havn 



Conversely 7 suppose P is uniform. Then for every w
1

E n
1 

, 

ve have 

PUhx ••• x{w.}!l< ••• ?<~ )'1 J. . . n 

••• k 
n = 1/k. , 

1. 

'''rv:~:;:-e the f:mrn.mation is taken over t~e SP.t st 1 x ••• x{w 1 }>e ••• x~n 

d ·-1 D ~· p 1 hv an 1.~ , ••• ,n. e~1ne i 

Clearly P~ · is uniform. Now 
J_ 

P(l'qx •.. xA) = 1: P({(wl, .. .,wn·}) 
n 

= 1:1/kt ••• k = n 

= 
n 
n 

i=l 
P I• . ( . ) .A.. , 

1 l . 

n 
IT N(A.)/k. 

i=l l . 1 

Mhere i:he sum":l.ation is taken ovC?r the set !', 1 • • • .An and 

·' ( A ~) ff.cnotcs the nmnrer of el-"~~l'::!nts in the set A_.; ,i=l, ••• ,n. 
·'-

rr:'h11s P=P 1 x ••• xp n. Let F i 11 be a.nother :nro0abili.ty c.ssociateO. 

i = 1, ... ,n, 

'!'hen for 0vr:-rv A. s;; r:l. , 
J.. 1 

such that~= P 1 "x ••• x 

·;::.n. 1
, (A . . ) = P(n x X" x x0. ) - i'' - ]_ ~~1 ••• J:>., ••• ..• :-. n 

p ". 
n 

= P" ( Q 1) ••• Pi " (A . ) ••• P '' ( Q ) 
i 1 n n 

= p. ,. (A.) 
J.. J. • 

't'his nrov~s t:he uniaueness of P~ · • Hnnce the theore!Y' • 
J . 

In a loose sense, ':'heorP.:rrt / .1 c;avc. thi'lt the outc·0mes of 

a corrtDoun.0 (-n~n~rim~nt $ x ••• x~ n.r0 0r:rua.llv likeb.r if ?..!'.~ onlv 
\..'f '- n .. 

if t"1e exncrinv:mts ·t,, .. , , ' are indGnenf.en.t cmrt. t~e outcomes ~n ,. 
of 8ach ~i ~ro eqnally likelv. ITil-}_is nrooertv carr:!.8s over to 

ranA.om variables. In fact, it Nill be more vividl·v exhihite~ 

~~ terms of rando~ variables an~ will not de~en~ on the 

.structure of the underlying sample sne..c2. ':'he next t 1,_ecrcl"!1 

illustrates this ooint. 

( 1_ 4) 



Theorem 2. 2 . • Let X·l , ••• ,X be discrete random variables • n 
def-ined on a samole space n. The ran.f..om vector (X 1 , ••• ,xn) 

has a ~niform distribution i~ and onlv if X1 , •.. ,xn are 

independent and each x1 has a uniform distrihution. 

The oroof of this th~orem is, similar t.o an<1 even simpl~r 

than that.of the nrecedin~ t~ecre~. It is therefor~ l~ft to 
th~ reader. 

3. ArpZioatlDne~ In order to ~xplRin t~e BnuivalencA. o~ 

the bJo :methods of solution in. the a~ove exa'TlT)le in. the proPer 

context, it i's necessary that the same saJ""'.nl~ spac('l, namely 

n = ~-h ~ •.• x0n ( ln this ")Xample, n=3) rnur;t :he use'"1 in h0th ca~~?s. 

In thE:: first method, eaual likelihood of the outcC'lroes j.n n is 

assumed. 'rhis is t.he same as assuming the pro~a:bilitv 

associatBn ~.,ri th n, say P, to be uniform. r...et Pi he the 

oroha~ility associatea with n1 , i=l, ••• ,n. In the second 

method, the prohahili ty associat~d 'l/lri th n is actual!.u th.f.) 

proc.uct prohahility P 1 x ••• xPn with ~ach :Pi assumec. to K"-e 

uniform. Bv Theorem 2.1, P = !' 1 x ••• xP • This Proves the .. n 
e;n.uivalence of the two mGthcds. 

A simnler proof of a lem.rna ln r1],p-p.1~2-1~1, ~Till no~•7 be 
~ ... ,. 

discussed. :r,et n re the sample snac~ of all n! distinct 

permutations (a1 , ••• ,an) of. the :tnteacrs (1, ••• ,n), whP.re each 

nermutation has o~ohahilltv 1/nt. "Pnr each :t, i=l, ••• ,n, anr:' 

each w = (a1 ! ••• ,a ) £ n ' lt?.t xj he th~ nu.rnl-.e.r of r'i.nversions" n . . 
caused by i in W; i.A. ' x 1 ~) = rn if and only if i or~ce~e~ 

exactly m of thR inteqers l, .•• ,i-1 in the ner1"1utation w. 
The lero.l11a sta.tes that the random varia~lt=!S x1 , ••• ,x arr-> 

n 
independent and each X. has · a u.nifor:n1. dlstri~utio:n, i.e. 

] , 

P (Xi = m) = 1/i, 0 ~ m ~ :i. -· 1, i = 1, ••. ,n. 

"l'his result is far from Being obvious am·~ is difficult to )'lr.ovP. 

directl v. r:lut, in vi.e~~r of "!"reore!Yl .? .• 2, one only nec.C1 r,; to sho~r 

that th~ ran,l.om vector (X 1 , ••• ,X ) has a uniform c1ist.:r.it-ution. 
n 

Tn•Jend, it is not difficult to see that the Manpinq dAfineo. t>•r 

( a1 , ••• .• an) ~ . (X 1 ( w ) , ••• ,x n Cw ) ) for every w = (a J. ~ ••• , an h: n 
is one -·tonone and onto from n tc N x N1 x ••• x N 

1 
, ¥-rh~re 

o n-
·1\,. == { n 1 i } 1' 1 1 '1"\.. .~: 1 ( ) ' j -·r -- 1 • • • ,_ , .= _, ••• ,n- . -L.US ;_or ev~rv va .. u~ c

1
, ••• c 

- n 

of (X r ••• ,X ) , 
1 n 

'::'his n:Y."oves the lemma. 

r.tef~:r.enc'3 
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