TFACHING NOTES

The proving of Cayley's theorem at Further Mathematics level

Oey Liang Hien

Ubdoubtedly one of the hardest theorem to prove in "A" level syllabus of Further Mathematics is Cayley's theorem in group theory : "Every finite group of order n is isomorphic to a permutation group on n symbols." This poses to teachers who must teach the theorem at pre-university level a challenge to make their students understand it and its proof on the spot without much difficulty.

In this article, I like to present a method of proof which I think is the most suitable one at this level. In choosing a suitable method of proof, I have been guided by the following points :

- (1) Students are, in general, weak in abstract concepts.
- (2) No use should be made of concepts which are not in the syllabus. (For example, the proof given by J. A. Green
 [1] is not suitable as it makes use of the homomorphism
 theorem.)
- (3) It is preferable to have a long but intelligible proof rather than a short but difficult proof. Students are quite prepared to follow a long chain of carefully reasoned steps.

Thus, to overcome the abstractness of whatever proof we present, we could first make the proof more "concrete" by proving the theorem for one particular case before giving the general proof. I estimate that should I prove it generally at once, about 20 per cent of the students would understand it whereas if I prove a particular case and then generalize, 85 to 90 per cent would understand it.

This method of proof is given by Frank Ayres, Jr [2]. Moreover, in this proof there is only one step which is not easily understood by students : if $G = \{g_1, g_2, \dots, g_n\}$ is a group with respect to the operation * and p_j is the permutation

$$P_{j} = \begin{pmatrix} g_{1} & g_{2} & \cdots & g_{n} \\ & & & \\ g_{1} \ast g_{j} & g_{2} \ast g_{j} & \cdots & g_{n} \ast g_{j} \end{pmatrix}$$

where $g_j \in G$, then p_j can also be written as

$$p_{j} = \begin{pmatrix} g_{1} * g_{k} & g_{2} * g_{k} & \cdots & g_{n} * g_{k} \\ (g_{1} * g_{k}) * g_{j} & (g_{2} * g_{k}) * g_{j} & \cdots & (g_{n} * g_{k}) * g_{j} \end{pmatrix}$$

for any given g_k in G. entlet, another analysis of value

To convince students, we first given an example to show that in the expression of a permutation, the ordering of the columns is not important :

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 5 & 4 & 1 \\ 4 & 5 & 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 1 & 3 & 2 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix}, \text{ etc.}$

Next, we point out that the columns and rows of a group multiplication table satisfy the Latin square property. That is, each row (or column) contains all the elements of the group without repetition :

20	$g_1 g_2 \cdots g_k \cdots g_n$
g ₁	g ₁ *g _k
g ₂	$(36) (31) = g_2 * g_k$ (1) = g
0	·
(a))))))))))))))))))	= (13) (25) (46) r . D_{4} = (14) (26)
g _n (= (156) (234) = g _n *g _k = (166) (24

These two observations will convince the students of the validity of the second expression for p_j .

Let us verify Cayley's theorem in the case of a particular group G with the following multiplication table

*	\$1	g ₂	83	gų	g ₅	86	
g1				g ₄			10
g2	g2	gl	g ₅	g ₆	g3	g ₄	
g3	g3	g ₆	gl	85	g ₄	82	
g ₄	g ₄	g ₅	g ₆	g1	⁸ 2	g3	
g ₅	\$5	g ₄	g ₂	g3	g ₆	g ₁	
g ₆	g g ₆	g3	gg	g2	g1	g ₅	

Hav. al theorem

Using the previous notations, define . A star south was not

$$P_{5} = \begin{pmatrix} g_{1} & g_{2} & \cdots & g_{6} \\ g_{1} * g_{5} & g_{2} * g_{5} & \cdots & g_{6} * g_{5} \end{pmatrix}$$
$$= \begin{pmatrix} g_{1} & g_{2} & g_{3} & g_{4} & g_{5} & g_{6} \\ g_{5} & g_{3} & g_{4} & g_{2} & g_{6} & g_{1} \end{pmatrix}$$

ou Or write it simply as the enistrop (anulos to) you does

 $P_5 = (156) (234)$.

Thus we have the permutations

		P ₁ = (1)	9	P ₂	=	(12)	(36)	(45)	9
P3	=	(13) (25) (46)	3	P4	=	(14)	(26)	(35)	9
P ₅	=	(156) (234)	,	P ₆	=	(165)	(243	3).	

Form the multiplication table of the set $P = \{ P_1, P_2, P_3, P_4, P_5, P_6 \}$ under composition of permutations :

designed to the operation a and p, is t

- 170 -

-	^p 1	P ₂	P3	Pu	P 5	P6	
Pı	Pl	P ₂	P3		P 5	P ₆	1 P
D ₂	P2	^p 1	P ₅	P ₆	P3	P4×	
P3	P3	P ₆	P 1	P ₅	P4	P ₂	
P4	P4	P ₅	P ₆	P1	P ₂	P3	
P ₅	P ₅	P ₄	P ₂	P3	P ₆	P1	
P ₆	P ₆	P3	P ₄	Pa	P1	D ₅	

Thus P forms a group under composition. Define the mapping a from G to P by

 $\alpha(g_i) = p_i$, $i = 1, 2, \dots, 6$.

It can be easily seen from the table that α is one-to-one and onto, and also preserves the binary operations. Hence G is isomorphic to P.

We now proceed to give the general proof of Cayley's theorem.

Let $G = \{g_1, g_2, \dots, g_n\}$ be a group under the operation *. For each $i = 1, 2, \dots, n$, define the permutation

by the ass

$$P_{j} = \begin{pmatrix} g_{1} & g_{2} & \cdots & g_{n} \\ \\ g_{1} * g_{j} & g_{2} * g_{j} & \cdots & g_{n} * g_{j} \end{pmatrix}$$

which we simply write as

$$p_j = \begin{pmatrix} g_i \\ g_i * g_j \end{pmatrix}$$

Note that p_j is a permutation on the n elements of G since the elements in the second row occur in one column of a multiplication table of G and hence run through all the elements of G. We now show that the set

$$P = \{P_1, P_2, \dots, P_n\}$$

is a permutation group on n symbols.
Let $P_j, P_k \in G$. Then
$$P_j \tilde{o} P_k = \begin{pmatrix} g_i \\ g_i * g_j \end{pmatrix} \circ \begin{pmatrix} g_i \\ g_i * g_k \end{pmatrix}$$
$$= \begin{pmatrix} g_i \\ g_i * g_j \end{pmatrix} \circ \begin{pmatrix} g_i * g_j \\ g_i * g_k \end{pmatrix}$$
,
$$g_i * g_j \end{pmatrix} \circ \begin{pmatrix} g_i * g_j \\ g_i * g_j \end{pmatrix} \circ \begin{pmatrix} g_i * g_j \\ g_i * g_j \end{pmatrix},$$

by the remark mentioned earlier, a stand

$$= \begin{pmatrix} g_{i} \\ (g_{i} * g_{j}) * g_{k} \end{pmatrix}$$

$$= \begin{pmatrix} g_{i} \\ g_{i} * (g_{j} * g_{k}) \end{pmatrix}$$

by the associativity of * ,

retions, Hence

r the operation + .

0. 47(13) (2

$$\begin{pmatrix} \mathbf{s}_{\mathbf{j}} \\ \\ \mathbf{g}_{\mathbf{j}} * \mathbf{g}_{\mathbf{j}} \end{pmatrix} = \mathbf{p}_{\mathbf{j}}$$

where $g_j * g_k = g_l$ for some $g_l \in G$. Hence P is closed under composition.

het G = (suspervise) b

Composition is associative and the identity element is $\begin{pmatrix} g_i \\ g_i \end{pmatrix}$. The inverse of $\begin{pmatrix} g_i \\ g_i \end{pmatrix}$ is $\begin{pmatrix} g_i \\ g_i \\ g_i * g_j \end{pmatrix}$: $\begin{pmatrix} g_i \\ g_i * g_j \end{pmatrix}$.

- 172 -

$$\begin{pmatrix} g_{i} \\ g_{i} * g_{j} \end{pmatrix} \circ \begin{pmatrix} g_{i} \\ g_{i} * g_{j}^{-1} \end{pmatrix} = \begin{pmatrix} g_{i} \\ g_{i} * g_{j}^{-1} \end{pmatrix} \circ \begin{pmatrix} g_{i} * g_{j}^{-1} \\ g_{i} * g_{j}^{-1} \end{pmatrix}$$
$$= \begin{pmatrix} g_{i} \\ g_{i} * g_{j} \end{pmatrix} = \begin{pmatrix} g_{i} \\ g_{i} * (g_{j} * g_{j}^{-1}) \end{pmatrix} = \begin{pmatrix} g_{i} \\ g_{i} \end{pmatrix}$$

Similarly,

$$\begin{pmatrix} g_{i} \\ g_{i} * g_{j}^{-1} \end{pmatrix} \circ \begin{pmatrix} g_{i} \\ g_{i} * g_{j} \end{pmatrix} = \begin{pmatrix} g_{i} \\ g_{i} \end{pmatrix}$$

Thus P is a group under the operation of composition.

Define the mapping α from G to P such that

$$\alpha(g_i) = p_i$$
, $i = 1, 2, ..., n$.

apore Singapore

Moreover, α is clearly one-to-one. To show that α preserves the group operations, we have

$$\begin{aligned} \alpha(g_{r}) \circ \alpha(g_{s}) &= \begin{pmatrix} g_{i} \\ g_{i} * g_{r} \end{pmatrix} \circ \begin{pmatrix} g_{i} \\ g_{i} * g_{s} \end{pmatrix} \\ &= \begin{pmatrix} g_{i} \\ g_{i} * g_{r} \end{pmatrix} \circ \begin{pmatrix} g_{i} * g_{r} \\ (g_{i} * g_{r}) * g_{s} \end{pmatrix} = \begin{pmatrix} g_{i} \\ (g_{i} * g_{r}) * g_{s} \end{pmatrix} \\ &= \begin{pmatrix} g_{i} \\ (g_{i} * g_{r}) * g_{s} \end{pmatrix} = \alpha(g_{r} * g_{s}) . \end{aligned}$$

Hence a is an isomorphism from G onto P.

I would like to mention that I tried this method on

my students at the National Junior College with satisfying results.

References

- [1] J. A. Green, Sets and groups, Routledge and Kegan Paul, London, 1965, reprinted 1974, p. 76.
- [2] Frank Ayres, Jr., Modern algebra, Schaum, New York, 1965, pp. 86, 94.

Research Fellowships in Germany

Notice has been received through the Singapore National Academy of Science (SNAS) regarding the availability of Research Fellowships sponsored by the Alexander von Humboldt Foundation in the Federal Republic of Germany. Information and application forms may be obtained from the Embassy of the Federal Republic of Germany in Singapore or from the Secretary General, Alexander von Humboldt Foundation, D-5300 Bonn-Bad Godesberg, Federal Republic of Germany.