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The main aim of any structure theory of rings is to 

describe a ring in terms of some simpler ones. The first 

step in such a theory is to decide on the candidates for 

the 'simple' rings. The choice of 'simple' rings is not 

arbitrary. It depends very much on how decisive and how 

conceptually important are the results that can be produced. 

Once the class of 'simple' rings is decided on, it is 

necessary to find. ways of putting these rings together to 

form a new class of rings, called the 'semi-simple'rings. 

In a meaningful structure theory, it should not 

happen that every ring is 'semi-simple'. A ring may 

contain undesirable elements or ideals that get in our way 

of completely describing the ring in terms of 'simple' rings. 

The major effort in a structure theory is thus to decide 

on the desirable and undesirable properties that a ring may 

have in such a way that (i) all 'simple' rings have the 

desirable property; (ii) among all the ideals of a ring R 
with the undesirable property, there is a unique maximal 

one, say A; and (iii) the factor ring R/A is 'semi-simple'. 

Rings with the undesirable property are usually called 

'radical' rings and the unique maximal ideal A, the 'radical' 

of R. 

It is therefore evident that the trio (listing of 

desirable and undesirable properties of rings, selection of 

the class of 'simple' rings and identification of ways that 

'simple' rings weave together to yield 'semi-simple' rings) 

are inter-related. If the structure theory is to be con

sequential, they will have to be considered simultaneously. 
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In every structure theory of rings, there are invariably 

three major components: 

(i) The study of 'simple' and 'semi-simple' rings 

(ii) The study of 'radical' rings 

(iii) The construction of rings with a given 'radical' 

and 'semi-simple' factor ring. 

In the existing structure theories, the first of the 

above problems has been handled most successfully, while little 

is known about the last problem. The purpose of this talk is 

to gather results on classes of 'simple' and 'semi-simple' 

rings that appear in the literature. A brief description of 

the radical theory of rings will also be given to illustrate 

the close tie between the trio mentioned above. 

Radical Theory 

Radical theory of rings was an area of fruitful mathe

matical research i r. 1940's and 1950's. Roughly speaking, it 

is a study of the undesirable , properties of rings. There 

were various radical properties contemplated. In each case 

there resulted in a successful description of the correspond

ing 'semi-simple' rings in terms of 'simple' rings. These 

isolated instances conform to the general framework of a 

postulated system by the Russian mathematician V. Andruna

kievic in 1958-61 (!,2~. 

A property P about rings is a radical property if 

the following conditions hold: 

(A) Every homomorphic image of a ring with property 

P possesses the property P. 

(8) Each ring R contains an ideal A with property P 

which contains every other ideal with property P. 

(C) The different ring R/A is P-semi-simple, i.e., it 

does not contain any nonzero ideals with property P. 

For brevity, a ring (resp. ideal) with property P will be 

called P-ring (resp. P-ideal). The unique maximal P-ideal 

of a ring is called the P-radical of the ring. 
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There are many ways ~adical properties can be con

structed. We shall mention two: the upper radical property 

and the lower radical property determined by a class of rings. 

A radical property can be constructed by specifying 

a class of semi-simple rings. In general, the class S of 

all semi-simple rings with respect to a radical property 

P satisfies the following condition: 

(D) Every nonzero ideal of a ring of S can be mapped 

homomorphically onto some nonzero ring of S. 

If we start a class X of rings which has (D), we can 

construct a radical property P(X) by defining a P(X)-ring 

to be one which has no nonzero homomorphic image R such 

that every nonzero ideal of R can be mapped homomorphically 

onto some nonzero·ring of X. This radical property is 

called the upper radical property determined by X. 

A radical property can also be constructed by 

specifying a class of radical rings. Given a class of 

rings Z, we can enlarge it step by step through the follow

ing process and eventually arrive at a radical property. 

pefine z1 to be the class of all rings which are homomorphic 

images of rings in z. For any ordinal number p, if p is 

not a limit ordinal, Zp is the class of all rings R such 

that every nonzero homomorphic image of R contains a non

zero ideal in Zp-l' If pis a limit ordinal, then ZP 

is the union of all Za (a< p). The union of all Zp 

determines a radical property, called the lower radical 

property determined by z. 
Practically all of the significant radical properties 

that appeared in the literature can be represented as 

either upper radical properties or lower radical properties 

determined by some classes of rings. For example, the Baer 

lower radical B l3], the Levitzki radical L [4], the nil 

radical N l_s}, the Jacobson radical J [ s] and the Brown

McCoy radical BM l.? ,a] can be aptly described in terms of 

upper and lower radical properties as follows: 
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B = loHer re all nilpotent rings 

= upper re all prime rings 

L = lower re all locally nilpotent rings 

= upper re all prime L-semi-simple rings 

N = lower re all nil rings 

= upper re all prime N-semi-simple rings 

J = upper re all primitive rings 

BM = upper re all simple rings with an identity 

The corresponding radicals of a ring R can be written as 

intersection of specific types of ideals: 

B(R) = n all prime ideals of R 

L(R) = r\ all prime ideals p such that RIP is L-semi-simple 

N(R) = {\all prime ideals p such that RIP is N-semi-simple 

J(R) = (\ all pr.imitive ideals 

BM(R) = n all ideals M such that RIM is simple with an 
identity 

A semi-simple ring can therefore be represented as a sub

direct sum of specific classes of rings. 

Readers interested in radical theory of rings may 

consult Divinsky [9]. 

Structure of Finite Dimensional Simple and Semi-simple Algebras 

The pi~neer work on the structure of finite dimensional 

simple algebras was probably due to J.H. MacLagan Wedderburn. 

In [1~, Wedderburn proved the following celebrated theorem: 

Theorem (Wedderburn 1908) Any simple finite dimen

sional algebra can be represented as the tensor product of 

a finite dimensional division algebra and a simple matrix 

algebra. 

A semi-simple finite dimensional algebra 

can be represented uniquely as the direct sum of a finite 

number of simple finite dimensional algebras. 

All algebras are to have an identity, simple means 

without any nonzero proper ideals and semi-simple means 

having no nonzero nilpotent ideals. 
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In essence, Wedderburn'i work reduces the study of 

semi-simple and simple finite dimensional algebra to that 

of finite dimensional division algebras. Investigations 

into simple (and hence division) algebras had been carried 

out in the next couple of decades. Earlier in 1905, 

Wedderburn [111 established that a finite division algebra 

is a field. For division algebra D finite dimensional 

over its centre F, the closes~ result that w~ c~n get is 

that : if K is a maximal subfield of D, then [D: K] = [!< £1] 
= 1\p:~]. There is always a maximal subfieid which is . 

separable over the centre. Established in this period was 

also the following theorem ·which has many applications: 

Theorem (Noether-Skolem) Let R be a simple Artinian . 

ring with centre F and let A and B be simple subalgebras 

of R which contain F and are finite dimensional over it. 

If p is an F-isomorphism of A onto B, then th.ere is an 

invertible element a of R .such that p(x) = a-1xa for all 

x in A. 

Return now to the structure theory of divisible 

algebra. By Wedderburn's theorem, if A and B are finite 

dimensional central simple a.lgebras over the field F, then 

where C and D are finite di.mensional divisional algebras 

.having F as c~ntre and Fn denotes the ring of all nxn 

matrices over F. Ari equivalence relation can be defined 

on the collection -&en of all central simple algebras 

over F when we set 

A - B if C : D (or equivalent A ®rr = B ~ F ) . . m "l'n 

The equivalence classes form an abelian group B(F), (called 

the Brauer group of F) under the operation induced by tensor 

product. 

Finite dimensional central simple algebras can be 
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constructed (up to equivalence) as follows: 

Let A= DGt Fk be a finite dimensional central 

simple algebra over F with D a division algebra; and let 

K be a separable maximal subfield of D. Then [K:Fj = 

lLD:Fj = n say. Let L be the normal closure of K with 

[L: K1 = m. Then B = 
and C_B: r] = L L: ~j 2 

• 

D~ Fm is central simple over F, B ~ L 

So A and Bare equivalent. 

Let G be the Balois group of Lover F. By Noether-

Skolem theorem, for each o in G, there exists t
0 

in B 

such that o(x) = t
0
xt- 1 for all x in L. The set of all 

t
0

Co in G) are linear independent over L. If o and T 

are two elements of G, then 0 # t
0
- 1 t t = f(o,T) E L. The 

T 0 T 
triple (L,G,f) has the following properties: 

( i) 

(ii) 

B = { 1: t a Ia E L} , 
OEG 0 0 o 

(iv) f(O,TV)f(T,V) = f(OT,V)V- 1 (f(O,T)) 

Thus, up to equivalence, a finite dimensional central 

simple algebra A over R can be represented as the triple 

(L,G,f) where L is a finite normal separable extension 

of F, G is the Galois group of Lover F and f is a mapping 

of G)C..G into L* = L .... {O} satisfying (iv). The algebra 

A consists of all linear combinations of the indeterminates 

t
0

(o E G) with coefficients in L. The operations on A 

are governed by (ii) and (iii). 

With these preparations, the following result can 

be proved. 

Theorem. The Brauer group B(F) of the field F is 

torsion. In fact the order of the class of a central simple 

algebra A over F divides n, where n 2 = [D:Fj, A = D ~ Fn 
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Structurallya finite dimensional central division 

algebra over F can be factored as a tensor product of a 

finite number of central division algebras of prime power 

degree over F: 

Theorem. If D is a 

algebra over F with l[o: F l 
primes, then 

finite dimension central division 
ml mk 

= P1 · · ·Pk where pi are distinct 

where Di are central division algebra over F with l[?i:r] = 
m. 

pi 
l 

There is a concise account of the structure of 

simple algebras given in Herstein [12] 

To end this section, it may be interesting to 

mention the work of Herstein and Amitsur on finite subgroups 

of the multiplicative group of a division ring. Determina

tion of all finite groups that can be embedded in a division 

ring was intiated by Herstein [13j and carried by Amitsur 

[14] . These groups are classified into five classes 

connected in some way to the finite groups of rotations 

of the 3-dimensional Encludean sphere. Main results are 

quoted in the following theorems: 

Theorem (Herstein 1953) The only finite subgroup 

of a division ring of finite characteristic are cyclic. 

Subroups of odd order of a division ring 

of characteristic zero are metacyclic: <a,bjan = bm = 1, 

bab
-1 r = a > , 

Theorem (Amitsur 1955) Finite subgroups G of a 

division ring are of one of the following types: 

(A) All Sylow subgroups of G are cyclic. 

(B) The odd Sylow subgroups of G are cyclic and 

the even Sylow subgroup of G is a generalized quaternion 

group of order 2r ( r >,. 3) : 
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Theorem (Amitsur 1955) A f inite group G can be em

bedded in a division ring if and only if G is of the 

following types: 

(Tl) Cyclic groups 
(T2) D-group G = <a,bla m 

1' bn t bab-l = = a 
' m,r k where (m,r) = 1' n = min{kia = 1 (m)} ' t = m/ (r-1 ,m), m 

and r satisfy certain conditions. 

(T3) T-group Ti•x G , where m,r 

(i) T* is the binary tetrahedral group: The 

centre C of T has two elements and T*/C 

. is the tetrahedral group, 

(ii) for any plm, the minimal cp satisfying 

2Cp = 1 (p) is odd. 

= 

(T4) The binary octahedral group 0*: The centre C 

of O* has two elements and 0*/C is the octahedral group. 

(T5) The binary icosahedral group I*: The centre C 
of I* has two elements and I*/C is the icosahedral group. 

Structure of Artinian Rings 

Right Artinian rings (rings satisfying the descend

ing chain condition on right ideals) if simple or semi

simple have the similar structure as finite dimensional 

simple or semi-simple algebras. This was established by 

E. Art in [15) . 

Theorem (Wedderburn 1908, Artin 1927) A semi-simple 

right Artinian ring is the direct sum of a finite number 

of simple right Artinian rings. 

Each simple right Artinian ring 

is isomorphic to Dn' the ring of all nXn matrices over 

the division ring D. Moreover n is unique, as is D up to 

isomorphism. 
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There is a~ interesting struc~ure for the additive 

group of an Artinian ring. The study of the additive 

structure of rings was first carried out by L. Fuchs. 

Jne of the illustrious classes is the Artinian rings. A 

perfect structure on the additive groups of such rings 

is given in the rollowing 

Theorem (Szele-Fuchs (l6j) In order that a group 

A be the additive group of an Artinian ring, it is 

necessary and sufficient that it has the form 

e. e. 
A =(i>q G Z(p.)GJZ(p.J), P·Jim 

lTJ finite l 7] J J 

where -ITJ• ll are arbitrary cardinals, p. ,p. are primes 
l J 

and m a fixed integer. 

Structure of Noetherian Prime and Semi-prime Rings 

The development of theory of right Noetherian rings 

( = rings with the ascending chain condition on right ideals) 

is one of the most recent mathematical activities. Noetherian 

rings are as a rule more difficult to deal with than Artinian 

rings as the former constitute a wider class than the latter 

in some sense. Precisely, 

Theorem. A right Artinian ring R is right Noetherian 

(1) if R has a right identity (Hopkins [17}). 

(2) if and only if R contains no quasi-cyclic sub

groups (Fuchs [18] ) . 

(3) if and only if the annihilator of R is finite. 

A. W. Goldie Li 9, 2 o] has recently several renowned 

theorems on prime and semi-prime rings satisfying certain 

chain conditions on some of the right ideals. These 

results give penetrating information about the nature 

of such rings. Quite independently, L. Lesieur and R. 

Croisot [21] published similar results at about the same 

time. 
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Theorem (Gclaie , Lesieur-Ct oi sot) The following 

properties of ring Rare equivalenl: 

(1) R is a right order in a semi-simple right Artinian 
ring. 

(2) R is a semi-prime , right Goldie ring. 

(3) A right ideal of R is essential if and only if it 

contains a regular element. 

Corollary. A ring R is a right order in a simple 

right Artinian ring if and only if it is a prime, right 
Goldie ring. 

Notes: (1) An element a of a ring R is regular if 

it is neither a left nor a right divisor of zero. 

(2) A ring Q is a right quotient ring of R (and R 
is a right order in Q) if (i) every regular element of R 

has an inverse in A, and (ii) every element of Q is of the 
form ab-l where a and b are elements of R with b regular. 

(3) A right ideal A of R is a right annihilator 

if there is a subset S of R suc h that A = {x E RISx = 0}. 
(4) R is a right Goldie ring if (i) R satisfies the 

ascending chain condition on right annihilators, and (ii) 
R is of finite right rank, i.e., R contains no infinite 

direct sums of right ideals. 

(5) A right ideal A of R is essential if A fiB ~ 0 

for all nonzero right ideal B of R. 

A refinement of the Goldie-Lesieur-Croisot theorem 
is the following result of Faith-Ut umi: 

Theorem (Faith-Utumi [2~) Let R be a ring with a 

simple, right Artinian quotient ring Q. Then Q contains 

a complete set M = {eij} of matrix units with the following 
property: 

If D is the centralizer of M in Q, then R contains 
a subring F = E Fe .. , where F is a right Ore domain <= n . • lJ l,J 
integral domain all of whose nonzero right ideals are 
essential) contained in R ~ D and D is the quotient division 
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ring of F. 

Diagrammetrically, the above theorem can be represented 

as follows: 

F-n 

Q=D 
R--- n 

R(lD -- D r---·. 

All subrings of Q containing Fn are right orders of Q. 
The above theorem tells us explicitly how to obtain right 

orders of a simple, right Artinian ring. 

Several lines of investigation on Noetherian rings 

diverge from the masterpiece of Goldie. Major ones are 

those on orders, localization and quotient rings. There 

is also a fine piece of work of Faith and others on simple 

Noetherian rings. 

L. Small [23] has shown that a right Noetherian 

ring R is an order in a right Artinian ring if and only if 

the set of all regular elements of R coincides with the 

set of all c such that ox t N or xc e: N => x e: N, where N 

is the largest nilpotent ideal of R. This result does not 

assume semi-prime-ness of R or simplicity of the quotient 

ring. 

Among the right orders in a ring Q, we may define an 

equivalence relation as follows: Two right orders Rand S 

of Q are equivalent if there exist invertible elements 

a,b,c,d of Q such that aRb~ Sand cSd ~ R. A maximal 

order is a right order R which is maximal (under set 

inclusion) in the equivalence class of R. 

If R is a right order of Q, a right R-submodule I 

of Q is a fractional R-ideal if aR ~ I ~ bR for some 
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invertible elements a, b of Q. If I ~ R, then I is called 

an integral R-ideal. 

Asano [24] studied a type of right orders R with an 

identity and for which all the fractional R-ideals in Q 
form a group under multiplication induced by that of Q. 
These right orders were named subsequently after him. 

Asano's work has recently been extended by Robson [25], 
Michler l 26], Lenagan [ 2 7J and others. We shall mention 

two of the main ·theorems. 

Theorem (Asano, Robson) Let R be a right order 

with an identity. Then the following are equivalent: 

(1) R is Asano. 

(2) R is a maximal order and integral R-ideals are 

R--projective. 

(3) Every integral R-ideal is invertible. 

Theorem (Asano, Michler, Lenagan) If a bounded 

prime right Noetherian ring is an Asano order, then it is 

a left order and is right and left hereditary. 

Here a ring is bounded if every one sided nonzero ideal 

contains a nonzero ideal. It is right hereditary if every 

.right ideal is projective. 

As for the right Noetherian simple ring·, Faith [2a] 
showed in 1964 that if R is a (right Noetherian) simple 

ring with identity and with a uniform ideal U (= every 

nonzero right ideal in U is essential), then 

(i) the ring K of all R-endomorphisms of U is a 

right Ore domain, 

(iit U, considered as a left K-module, is torsion 

free (of finite rank), and 

(iii) R is isomorphic to the ring of all K-endomor

phisms of U. 

Hart (29] extended Faith's result by showing that for a 

simple ring R with an identity, 

(a) R has a uniform right ideal if and only if R 

is of finite right rank. 
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( b ) if R has a uniform right ideal U, then the ring 

K of all R-endomorphisms of U is a right Ore domain and R 

is isomorphic to eKe, where e is an idempotent in K . 
n n 

(c) a uniform right ideal U of R is projective if 

and only if K is simple. 

(d) if U is a projective uniform right ideal of R, 

then R is right Noetherian,-}K is right Noetherian. 

Faith [3~ subsequently elaborated the results and 

obtain the following three equivalent conditions on a ring R. 

(1) R is a simple ring with a uniform right ideal U. 

(2) R is isomorphic to the ring of all K-endomorphisms 

of U, where K is a right Ore domain with at most one non-

U, as a left K-module, is finitely trivial proper ideal, and 

generated and projective. 

(3) R is isomorphic to the ring of K -endomorphisms 
0 

of U, where K is a right Ore domain with precisely three 
0 

ideals and U, as K
0

-module, is finitely generated and 

projective. 
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