INEQUALITIES FOR SOME CYCLIC SUMS

P. H. Diananda University of Singapore

A sum of the form

 $\sum_{r=1}^{n} f(x_{r+1}, x_{r+2}, \dots, x_{r+n}),$

where $x_{s+n} = x_s$ for each s and n is a positive integer, is called a cyclic sum. If this sum is denoted by $F_n(x_1, x_2, \dots, x_n)$ then it is clear that

$$F_n(x_{s+1}, x_{s+2}, \dots, x_{s+n}) = F_n(x_1, x_2, \dots, x_n)$$

for each s. It is because of this that the sum is called a cyclic sum.

In this paper we are concerned mainly with inequalities for the cyclic sum

$$S_n(x_1, x_2, \dots, x_n) = \sum_{r=1}^n \frac{x_r}{x_{r+1} + x_{r+2}}$$

where $x_{s+n} = x_s \ge 0$ and $x_{s+1} + x_{s+2} \ge 0$ for each s.

It is trivial that $S_1(x_1) = \frac{1}{2}$ and $S_2(x_1, x_2) = 1$.

In 1903, A. M. Nesbitt [1] asked for a proof of the inequality

$$S_3(x_1, x_2, x_3) \ge \frac{3}{2}$$
.

(Three known proofs of this are given in the appendix to this paper).

Over 50 years later, in 1954, H. S. Shapiro [2] asked for a proof of the inequality

$$S_n(x_1, x_2, \ldots, x_n) \ge \frac{n}{2}$$

- 171 -

for all positive integers n. At the present time it is known that this inequality is true for all $n \leq 10$ and false for all even $n \geq 14$ and all odd $n \geq 25$. For each of the remaining values of n (namely 11, 12, 13, 15, 17, 19, 21 and 23) it is not known whether the ineuqality is true or false.

H. S. Shapiro proved the inequality for n = 3 and n = 4 and C. R. Phelps for n = 5, but their proofs have not been published. L. J. Mordell [3] and the author [4] proved the inequality for $3 \le n \le 6$. Later D. Z. Djokovic [5] proved the inequality for n = 8. Using this result, B. Bajšanski [6] and the author [7] proved that the inequality holds for n = 7 also. More recently, P. Nowosad [8] proved the inequality for n = 9 and 10.

M. J. Lighthill (see [9]) proved that the inequality is false for n = 20. He himself extended his method to prove the inequality false for n = 14. His proof has not been published. For n = 14, using Lighthill's method, A. Zulauf [10] and M. Herschorn and J. E. L. Peck [11] proved the same result. That the inequality is false for all even n \ge 14 follows from this, since it can be easily seen that

seen that $S_{n+2}(x_1, x_2, \dots, x_n, x_1, x_2) = S_n(x_1, x_2, \dots, x_n) + 1.$

R. A. Rankin [12], using Lighthill's result for n = 20, proved that the inequality is false for all sufficiently large odd n. Later A. Zulauff [13] proved that the inequality is false for all odd n \geq 53. This was improved by the author [7], who proved that the inequality is false for all odd n \geq 27. Later, D. E. Daykin [14] and M. A. Malcolm [15] proved that the inequality is false for n = 25.

In his paper [12] Rankin also proved that there is a positive number $\lambda < \frac{1}{2}$ with the property that

- 172 -

$$S_n(x_1, x_2, \ldots, x_n) \ge \lambda n$$

is true for all n, but

or

$$S_n(x_1, x_2, \dots, x_n) \ge (\lambda + \varepsilon)n$$

is not true for all n and all x_1, x_2, \ldots, x_n , however small $\varepsilon > 0$ is. He stated that he could prove that $\lambda > 0.3$. Later he [16] published a proof showing that $\lambda > 0.33$. The author proved that $\lambda > 0.45$ in [17] and later that $\lambda > 0.46$ in [18]. More recently V. G. Drinfeld [19] has proved that $\lambda = 0.494...$

In $\begin{bmatrix} 4 \end{bmatrix}$ and $\begin{bmatrix} 20 \end{bmatrix}$, the author investigated the inequality

$$T_{n}(x_{1}, x_{2}, ..., x_{n}) = \sum_{r=1}^{n} \frac{x_{r}}{x_{r+1} + x_{r+2} + ... + x_{r+m}} \ge \frac{n}{m}$$

where $x_{n+s} = x_s \ge 0$ and $x_{s+1} + x_{s+2} + \dots + x_{s+m} \ge 0$ for each s, and proved that the inequality is true if

n m+2 or 2m or 2m+1 or 2m+2, or n | m+3 and n = 8 or 9 or 12, n | m+4 and n = 12.

For $m \ge 3$ it is not known whether there are any other (m,n)for which the inequality holds.

D. E. Daykin [14] considered the inequality

$$\sum_{r=1}^{n} \left(\frac{2x_r}{x_{r+1} + x_{r+2}} \right)^{t} \ge n,$$

where $x_{s+n} = x_s \ge 0$ and $x_{s+1} + x_{s+2} > 0$ for each s, and proved that it is true for $t \ge 2$. Using his method, the author [21] proved that the inequality is true for $t \ge \frac{\sqrt{5+1}}{2}$

- 173 -

= 1.6 The smallest T such that the inequality is true for all n and all t \geqslant T is not known.

Other related inequalities have also been studied by various authors (see, e.g., [3], [4], [14], [17], [18] and [20] to [24]). An expository account of cyclic inequalities, covering many of the publications up to 1968, is given in the book [25] by D. S. Mitronović.

References

- Nesbitt, A. M. Problem 15114. Educ. Times (2) 3 (1903), 37.
- Shapiro, H. S. Problem 4603. Amer. Math. Monthly
 61 (1954), 571.
- 3. Mordell, L. J. On the inequality $\sum_{r=1}^{n} x_r / (x_{r+1} + x_{r+2})$ $\geqslant n/2$ and some others. Abh. Math. Univ. Hamburg 22 (1958), 229.
- Diananda, P. H. Extensions of an inequality of H. S. Shapiro. Amer. Math. Monthly 66 (1959), 489.
- Djokovic, D. Z. Sur une inégalité. Proc. Glasgow Math. Assoc. 6 (1963), 1.
- 6. Bajšanski, B. A remark concerning the lower bound of $x_1/(x_2+x_3) + x_2/(x_3+x_4) + \ldots + x_n/(x_1+x_2)$. Univ. Beograd Publ. Electrotehn. Fac. Ser. Mat. Fiz. No. 70-76 (1962), 19.
- Diananda, P. H. On a cyclic sum. Proc. Glasgow Math. Assoc. 6 (1963), 11.
- Nowosad, P. Isoperimetric eigenvalue problems in algebras. Comm. Pure Appl. Math. 21 (1968), 401.
- 9. Shapiro, H. S. Problem 4603. Amer. Math. Monthly 63 (1956), 191.
- Zulauf, A. Note on a conjecture of L. J. Mordell.
 Abh. Math. Sem. Univ. Hamburg 22 (1958), 240.

- 174 -

11.	Herschorn, M. and J. E. L. Peck. Problem 4603. Amer. Math. Monthly 67 (1966), 87.
12.	Rankin, R. A. An inequality. Math. Gaz. 42 (1958), 39.
13.	Zulauf, A. On a conjecture of L. J. Mordell. II. Math. Gaz. 43 (1959), 182.
14.	Daykin, D. E. Inequalities for functions of a cyclic nature. J. London Math. Soc. (2) 3 (1971), 453.
15.	Malcolm, M. A. A note on a conjecture of L. J. Mordell. Math. Comp. 25 (1971), 375.
16.	Rankin, R. A. A cyclic inequality. Proc. Edinburgh Math. Soc. (2) (1960), 139.
17.	Diananda, P. H. A cyclic inequality and an extension of it. I. Proc. Edinburgh Math. Soc. (2) 13 (1962), 79.
18.	Diananda, P. H. A cyclic inequality and an extension of it. II. Proc. Edinburgh Math. Soc. (2) 13 (1962), 143.
19.	Drinfel'd, V. G. A cyclic inequality (in Russian). Mat. Zametki 9 (1971), 113.
20.	Diananda, P. H. On a conjecture of L. J. Mordell regarding an inequality involving quadratic forms. J. London Math. Soc. 36 (1961), 185.
21.	Diananda, P. H. Some cyclic and other inequalities. IV. Proc. Cambridge Philos. Soc. 76 (1974), 183.
22.	Daykin, D. E. Inequalities for certain cyclic sums. Proc. Edinburgh Math. Soc. (2) 17 (1971), 257.
23. Dedita	Boarder, J. C. and D. E. Daykin. Inequalities for certain cyclic sums. II. Proc. Edinburgh Math. Soc. (2) 18 (1973), 209.
24.	Baston, V. J. Some cyclic inequalities. Proc. Edin- burgh Math. Soc. (2) 19 (1975), 115.
25.	Mitrononvić, D. S. Analytic inequalities (Berlin, Heidelberg, New York. 1970).
	- 175 -

Appendix

Below are three proofs of the inequality

 $S_3(x_1, x_2, x_3) \ge \frac{3}{2}$.

First proof. The inequality is equivalent to

 $\frac{x_1 + x_2}{x_2 + x_3} + \frac{x_3 + x_1}{x_2 + x_3} + \frac{x_2 + x_3}{x_3 + x_1} + \frac{x_1 + x_2}{x_3 + x_1} + \frac{x_3 + x_1}{x_1 + x_2} + \frac{x_2 + x_3}{x_1 + x_2} \ge 6 ,$

which follows from the inequality between arithmetic and geometric means.

This proof can be generalized to prove that $S_n(x_1,x_2,\ldots,x_n)$ or $S_n(x_n,x_{n-1},\ldots,x_1) \ge \frac{n}{2}$.

Second proof. The inequality is equivalent to

$$(x_1+x_2+x_3)(\frac{1}{x_2+x_3} + \frac{1}{x_3+x_1} + \frac{1}{x_1+x_2}) \ge \frac{9}{2}$$

which is true, since

$$\frac{1}{3}\left(\frac{1}{x_2+x_3} + \frac{1}{x_3+x_1} + \frac{1}{x_1+x_2}\right) \ge \frac{3}{2(x_1+x_2+x_3)}$$

by the inequality between arithmetic and harmonic means. This proof can be generalized to prove that

$$T_{m+1}(x_1, x_2, \dots, x_{m+1}) \ge \frac{m+1}{m}$$

<u>Third proof</u>. Considering $S_3(x_1, x_2, x_3)$ as a weighted sum of $\frac{1}{x_2+x_3}$, $\frac{1}{x_3+x_1}$, $\frac{1}{x_1+x_2}$ with weights x_1 , x_2 , x_3 , respectively, we can see that

 $S_{3}(x_{1}, x_{2}, x_{3}) \geqslant \frac{(x_{1} + x_{2} + x_{2})^{2}}{x_{1}(x_{2} + x_{3}) + x_{2}(x_{3} + x_{1}) + x_{3}(x_{1} + x_{2})}$

- 176 -

by the inequality between weighted arithmetic and harmonic means. Hence the inequality $S_3 \ge 3/2$ follows if we can prove that the quadratic form

$$(x_1+x_2+x_3)^2 - \frac{3}{2} x_1(x_2+x_3) - \frac{3}{2}x_2(x_3+x_1) - \frac{3}{2}x_3(x_1+x_2)$$

is positive semi-definite. This is true since the quadratic form is equal to

 $(x_1 - \frac{1}{2}x_2 - \frac{1}{2}x_3)^2 + \frac{1}{4}(x_2 - x_3)^2$

This last proof is more complicated than either of the other two proofs. It can, however, be generalized to prove that

$$S_n(x_1, x_2, \ldots, x_n) \ge \frac{n}{2}$$

for n = 4,5,6 (see [4]), and also to prove all the known true cases of

$$T_n(x_1, x_2, \dots, x_n) \ge \frac{n}{m}$$

for m > 2 (see [4], [20]).