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Every now and then we receive claims that a construction
for trisecting an angle using ruler and compasses has been
found. We know very well that there must be fallacies
hidden in such a construction as it has been proved more
than a century ago that the problem of trisecting an
angle is unsolvable. The fallacies may be that either
(a) additional instruments are used knowingly or unknowingly,
or (b) the construction gives only an approximate solution

or solution to special and not general angle.

When teaching Galois theory last semester and admiring
its intrinsic beauty, I found a class of angles that cannot
be trisected, namely the acute angles of a right-angled
triangle two of whose sides have an integral ratio. I
present these angles together with proof in the hope that
it would reassure would-be proposers of constructions for

trisecting an angle that the problem is actually unsolvable.

For the benefit of those readers who are not too familiar
with the relevant portion of algebra, we recapitulate
necessary results on geometrical constructibility in the
preliminary section. This is to be followed by our main
results on the constructibility of an angle whose cosine
(or tangent) is a rational number.

It should perhaps be mentioned that while trisection
of an arbitrary angle by (unmarked) ruler and compasses
is impossible, there do exist in the literature methods of

trisection of an angle with additional aids. To quote

a few
A) Constructions by reduction to certain "vergings"

a) Pappus' construction [3, pp-235-236]
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b) Archimedes' construction [3, p.2u1]

c) Euclid's construction [2, PO« 285-286]

B) Direct constructions by means of conics
a) Pappus' first construction fak pp.205—206]
b) Pappus' second construction [2, pp.206-207]

c) Descartes' construction [4, pp.53-54]

C) Others

a) Construction by means of Hippias' trisectrix
[2, pp.75-76]

b) Kopf's approximate construction [, pp.54-55]. H

1. Constructibility 1
i
l
i

The geometers of ancient Greece posed in the fifth
century B.C. the following three elementary problems that
were to fascinate professional and amateur mathematicians
in antiquity as well as in modern times and to defy their

ingenuity for many years

Problem 1. (Trisecting an angle) To divide an angle

into three equal parts.

Problem 2. (Doubling a cube) To construct the side '
of a cubewhose volume is tutce that of a given cube.

Problem 3. (Squaring a eirele) To comstruct the side

of a s quare whos e area equals to that of a given circle.

It was proved more than 2200 years later that all three

of the problems were unsolvable by means of (unmarked) ruler
and compass alone. Although none of the three problems is
of mathematical importance once they were resolved, they

do have their historical significance. Problem 3 necessi-
tated a widening and sharpening of the number concept

while the historical importance of Problemsl and 2 is the

impetus they gave to the investigation of the arithaetic
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nature of the roots of algebraic equations, culminating in

the modern concepts of groups and fields.

We shall outline a proof of the unsolvability of the
angle-trisection problem.

In a problem of geometrical construction, there is
usually given a set of geometrical elements and we are
required to produce a particular geometrical element
from the given set by specified means. An analytical approach
to the problem is to characterize each geometrical element
by a number, or an ordered pair of numbers, or by a higher
dimensional ordered tuple of numbers. For example, in the
plane, a line segment can be characterized by its length,

a point by its coordinates in a rectangular coordinate system,
an angle between 0° and 180° by its cosine, a line by its
angle of inclination to the x-axis or by two points (as the

case may be), a circle by its center and radius, etc.

To be given a set of geometrical elements is essentially
to be given a set of numbers. The construction of the
required geometrical element can be accomplished by con-
structing the numbers characterizing the geometrical element.
Analytically, it is usually possible to find the relation,
in the form of an equation, between the required numbers and
the given numbers. The problem then reduces to the construction
of roots of the resulting equation. For example, in Problem
1, we are given the cosine, say ¢, of an angle (which can
be assumed to be acute) and we are required to find the
cosine, say x, of a third of the given angle. In essence,
trisection of an angle is equivalent to constructing the
roots of the equation

yx? - 3x = ¢ (0<ec < 1).

Likewise, Problem 2 asks for a construction of a root of

the equation
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Let us now examine what sort of numbers can be
constructed out of a given set of numbers by ruler and
compasses. A real number a is constructible if one can
construct a line segment of length |a| in a finite number
of steps from the given line segments representing the
given numbers. A complex number is constructible if both

its real and imaginary parts are constructible.

Theorem 1. Given a set of numbers which include 1.
Then

(a) Zf o and B are constructible and B #Z 0, then so
we oo + B, o - B, aB, o/B and JE . (Addition, sulttraction,
mltiplication and division ly nonzero numlers are referred

to as rational operations.)

(b) the set of constructible numbers consists precisely
of all those that can be o btained from the given numlers by

o finite number of rational operations and the extractions
of 8 quare roots.

A proof of the above theorem can be found in Bold
{L PP. 152, 7-9) .

A set of numbers which is closed under rational operations
is called, in abstract algebra, a field. Given a set S of
mnmbers, we shall denote the field of all numbers that can
be obtained from S by a finite number of rational operations
by Ko. For any a in KO with /@ not in K,» the set of all
elements a + bYa , where a and b belong to K,» is a field
md we shall denote this field by KO(/&). For B in Ko(/&)
ad VB not in Ko(/a), we denote the field of all elements
¢+ d/B (e, d in Ko(/a)) by KO(/E,/E). We may proceed in
this way to define bigger fields. It is obvious that
i number w is constructible if and only if there exists
2 sequence of numbers : o, B, ... , Y, 6 where a belongs to
t, B to K (Va), ... , § to KO(/&,/E,..,/J) and w to
[ (Va, VB, ., VY,YE) .

As we have noted earlier the problem of trisecting an
ingle with cosine c¢ is essentially equivalent to that of
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constructing the roots of the equation ux?® - 3x = c.
Regarding the constructibility of the roots of a cubic
equation, we have the following

Theorem 2. Assume that x> + px®> + qv + r = 0 18 a

cublc equation with coefficients in Ko' Then

(a) all roots of the equation are constructible if

the equation has a root in Ko’

(b) none of the roots of the equation can be con -
structed 1f the equation has no roots in K, .

For the proof, we refer the reader to Bold [1,pp.13-16].

If there is a general method to trisect an arbitrary
angle, then it can be applied to trisect an angle of 60°.
Since cos 60° = 1/2, K, is the field of all rational numbers.
The equation 4x3® - 3x = 1/2 has no rational roots. By
Theorem 2, cos 20°% is constructible. Thus the general method
fails to be applicable in this particular case.

2. Trisection of an angle whose cosine is a rational number

Let 6 be an angle (0 < & < 180°) whose cosine is a
rational number m/n (n > O, m and n are relatively prime.)
Our given set of numbers consists of 1 and m/n, and the
field Ko is just the field of all rational numbers. By
Theorem 2, 6 can be trisected if and only if the following
equation

(1) ux® - 3x = m/n

has a rational root. If a/B (B > 0, o and B are relatively
prime) is a rational root of Eq.(1l), then

4(a/B)® - 3(a/B) = m/n

or
alla? - 382) "
63
- 3 b

(2)
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mis prove half of the following lemma

Lemma 1. An angle 6 (0 < 8 < 180°) whose cosine is a

wtional number m/n can be trisected if and only if m/n is
if the form (2) where o and B are relatively prime integers

weh that B > 0 and B < a < B .

Proof. We have shown that if 6 can be trisected,
then m/n is of the required form (2).

Conversely, if m/n is of the form (2), then o/B is a
ot of Eq.(l). By Theorem 2, all the roots of the equation

ian be constructed. In particular, the angle which is a

third of 6 can be constructed.
Remark 1. If a/B is a root of the equation
4x?® - 3x = alua? - 38%2)/p3 ,

Jthen the other two roots are
3 Jag? . a2
28 (-0. i‘_ 36 = 3o ).

hen /B  is denoted by cos ¢, then these two roots can be
upressed as cos(¢ + 120°). The three angles ¢, ¢ + 120°
nd § - 120° are a third of the angles 6, 360° + 6 and

' + 6 (not necessarily in that order).

Remark 2. There are infinitely many rational numbers
f the form a(4a? - 382)/B*, where a and B are relatively

rime integers and |a| < B. Hence there are infinitely many
gles which can be trisected.

Theorem 3. 4n angle whose cosine is 1/n, Where n is a
®itive integer greater than 1, cannot hke triseccted.

Proof. Suppose on the contrary that there is an
nteger n(> 2) such that an angle with cosine 1/n can be

risected. Then by Lemma 1, there are suitable integers
» B such that

1/n = a(4a® - 382)/8% .
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We will show that this is not possible.

We have

B® = nal4a? - 3B2)

Hence o divides R*®, and so o = +1 since o and B are

relatively prime. If o = 1, we have

gd- =V plh-F3p2y

As B > 0, the only possibility is 8 = 1, and then n = 1, a
contradiction. Finally, if o = -1, we have
4n
62

i

3n = B

We consider two cases : (i) B < 2n, (ii) B > 2n. In case

-~

b// (i), we would have B2 < 4 so that f = 1. This implies that

l+n/€z an = l\\contradlhtln the assumption that 3n - B8
\\%‘\\‘,Ai g o

is an integer.

;;Z? n = -1, a contradiction. Lastly, in case 5 i

Remark 3. By a similar argument, we can show that an
angle whose cosine is -1/n (n > 2) cannot be trisected.

34 Trisection of an angle whose tangent is a rational number

Lemma 2. An angle & (0 < 6 < %) whose tangent is
a rational number m/n can be triseccted if and only if

ala? - 3p2)
B(3a% - B2)

B

for some integere o and B with B > 0, and o relatively prime
to B .

Proof. If & can be trisected, then the following
equation

() nx’ - 3mx? - 3nx + m = O

w16 2




has a rational root, a/B say (B > 0 and o, B rel~tively prime).
Here we have made use of the triple-angle formula
tan 3¢ = (3 tan ¢ - tan®¢)/(1 - 3 tan?¢). It follows that

m _ 3(a/B) - Ca/B)® _ 0 (382 - a?)

" 1 -"3Ca/B)? B(BZ - 3a?)

Conversely, if m/n is of the form (3), then o/B 1is
a root of (4). By Theorem 2, all roots of (4) can be con-
structed.

Remark 4. If a/B is a root of (302 - Bg2)gx? -
3(0? « 3B%)ax? -'3(3a2 - B2)Bx + (a? - 3B2%)a = O, then the
other roots are

(b8 + (a? + B2)V/3)/(-30% + B82),
or (o + V3B)/ (8 * V3a).

If we denote o/f by tan ¢, then the other roots are
tan(¢ + 120°).

Theorem 4. An angle © whose tangent 18 an integer n

greater than 1 cannot be trisected.
Proof. Suppose on the contrary that 6 can be trisected.
Then by Lemma 2,

ala? - 3B82)
B(3a2 - B2)

N <=

for some integers a, B which are relatively prime and 8 > O.
Thus

nB(3a? - B2) = ala? - 3B2).

Since o, B are relatively prime, it follows that a divides
n. Writing n = ok, we have

(5) a?(3kB - 1) = B2(kB - 3).
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Since B, 3kB - 1 are relatively prime, B divides o?, and
hence B = 1. Substituting into (5), we have

a2 = (k - 3)/(3k - 1).

Now it is easily checked that (k - 3)/(3k - 1) < 1 if

k > % or k < -1. Therefore either k = 0 or -1. The case
k = 0 implies that o? = 3, which is impossible. Finally,
the case k = -1 implies that o = + 1, so that n = + 1, again
a contradiction. Hence 6 cannot be trisected.

Remark 5. By a similar argument, we can show that an
angle whose tangent is *# 1/n or -n, where n is an integer
greater than 1, cannot be trisected.

Remark 6. Theorem 3 and 4 imply that in a right-angled
triangle in which the ratio of any two of its sides is an
integer greater than 1, the two acute angles of the triangle
cannot be trisected.

References

¢ e Benjamin Bold, Famous pro blems of mathematics , Van
Nostrand Reinhold, New York, 1969.

25 Carl B. Boyer, A history of mathematies , John Wiley,
New York, 1968.

<l Thomas Heath, A history of Greek mathematics , Vol. I,
Oxford University Press, London, 1921.

4. Heinrich Tietze, Famous problems of mathematics , Grayloc
Press, New York, 1965.

2418 -






