
PROBLEMS AND SOLUTIONS 

A book-voucher prize will be awarded to the best solution of a starred problem. 
Only solutions from Junior members and received before 1 December 1978 will be consi
dered for the prizes. If equally good solutions are received, the prize or prizes will be 
awarded to the solution or solutions sent with the earliest postmark. In the case of iden
tical postmarks, the winning solution will be decided by ballot. 

Members are reminded that although no prizes are awarded to the contribution of 
problems, interesting problems at secondary school or university level are most welcome. 
Whenever possible, please submit a problem together with its solution. Problems or so
lutions should be sent to Dr. K. N. Cheng, Department of Mathematics, University of 
Singapore, Singapore 10. 

*P6/78. Let T, T' be two linear transformations of the three-dimensional Euclidean 
space V into itself. Let A, A' be the matrices of T, T' respectively with respect to some 
fixed rectangular axes Oxyz with origin 0. Further, let A' be the transpose of A. Prove 
that if P, Q, R are points of V such that T : P --Q, T' : P-- R, then the line OP is 
perpendicular to the line QR. 

(Via Ho Soo Thong) 

*P7/78. Given 11ABC. Let L, M be points on AB, BC respectively such that AL : LB 
= BM : MC = k, where k is some finite non-zero real number. If P, Q are points on AB, 
BC respectively such that PQ intersects LM at T with PT : TQ = k, show that AP : PB = 
IQ : QC = LT : TM. 

(Via T. A. Peng, Y. K. Leong and K. N. Cheng) 

*P8/78. A sphere of mass m 1 moves with uniform velocity V on a smooth horizontal 
floor and impinges upon a stationary sphere of mass m 2 , which then moves on the floor 
until it hits a fixed vertical plane barrier. In order to allow as many impacts as possible, 
the barrier is shifted parallel to itself through some distance away from the rebounding 
sphere after each impact and kept fixed before the next impact. Assuming that all collisions 
are direct and perfectly elastic, find the total number of collisions between the two spheres. 

(Via Y. K. Leong) 
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Solutions to Pl - P5/78 : 

We refer problems Pl, P2/78 to the following chinese chessboard: 
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*P1/78. What is the minimum number of steps required to move a Horse from point 
A to point B? 

Solution of Gob Koon Shim : 

Let us regard the chessboard as divided into 9 x 8 = 72 unit squares (refer Fig. 1) 
and call the vertices of the squares the points on the board. 

We say that two points on the board are adjacent to each other if they are one unit 
apart. By a unit step we shall mean a jump from one point to another which is adjace1:1t 
to it. Then it takes at least 9 unit steps horizontally and 6 unit steps vertically to reach 

B from A (see Fig. 2), i.e. a total of at least 15 unit steps. Now in one move a Horse 
makes exactly 3 unit steps, namely 2 unit steps horizontally (or vertically) and 1 unit step 
vertically (or horizontally). Thus we need at least 15/3 = 5 steps to move a Horse from 
A to B. Since there exists at least one way of moving a Horse from A to B in five steps 
(see for example Fig. 2), the minimum number of steps required is five. 

(Also solved by Loh Hung Leong and Tay Yong Chiang) 
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*P2/78. This problem should read : 

In how many different ways can we move a Horse from point A to point B in the 
minimum number of steps determined in Problem 1? (We apologise for having overlooked 
the fact that the original problem was not phrased clearly.) 

Solution: 

The mmrmum number of steps required to move a Horse from A to B is five, as 
shown in Pl. One can move a Horse to B in one step from precisely three points on the 
board, namely a, b and c, as indicated in Fig. 3. Thus in order to move a Horse from 
A to B in five steps, one has to move the Horse from A to B via a, b, or c; and more
over, to reach a, b, or c from A in at most four steps. One counts easily that it takes 
at least 14 unit steps to reach c from A, and at least 12 unit steps to reach a or b from 
A. It therefore takes more than 4 steps to move a Horse from A to c (refer to solution 
of P1). Consequently one only needs to consider the possible ways of moving the Horse 
from A to B via a or b. By repeated applications of the above counting principle, one 
obtains eventually five different ways to move a Horse from A to B in five steps, as 
indica ted in Fig. 3. 
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*P3/78. Show that the polynomial 8x2 - 6x - 1 does not have a factor of the form 
ax + b, where a, b are integers. Hence deduce that the polynomial is irreducible over 
the field of rational numbers. 

Solution : 

Set f(x) = 8x2 - 6x - 1. It is clear that if f(x) had a factor of the form ax + b, 
where a, b are integers, or if f(x) is reducible over the field of rational numbers, then 
f(x) would have a zero of the form p/q, where p, q are non-zero integers with (p, q) = 1. 
Let us assume that f(x) has a zero of the form p/q, where p, q are non-zero integers 
with (p, q) = 1. Then 

- 6 ( p) - 1 = 0, 
q 

which gives 

q 2 = 8p2 - 6pq. 

We see that q is an even integer. Let q = 2n, where n is some non-zero integer. 
Then 

(2n)2 = 8p2 - 12pn, 

s o that 

n(n - 3p) 2p2 •••.•..•.•.•• (1) 
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We now look at equation (1). Since (p, q) = 1 and q = 2n, we must have (p2, n) = 1. 
This forces n f ~ .± 1, .± 2 } • If n = .±1, equation (1) becomes 1 = 2p 2 .± 3p :.-: p(2p .± 3), 
if n = .±2, we get 2 = p(p .± 3). One verifies easily that both equations cannot be satisfied 
by an integer p. It follows from this contradiction that f(x) has no factor of the form 
ax + b, where a, b are integers. This implies also that f(x) is irreducible over the field 
of rational numbers. 

*P4/78. Let A= ~a1 , a2, ••• ,an} be a set of n distinct integers. We define the sets 
-A, A + A and A - A as follows : 

-A = ~-a; 1 a; < A } 

A+A 

A- A 

For example of A = ~ -5, -3, -1, 3, 5 }, then A+ A = ~ -10, -8, -6, -4, -2, 0, 2, 
4, 6, 8, 10 } = A - A. In this case we see that A I= -A. Prove that there does not exist 
A satisfying 

A + A = A - A and A -/= -A, 

with A 
(Via H. P. Yap) 

Solution: 

We show that the condition A + A = A - A implies A = -A, in the case A = ~ a 1, 
a 2, a3} or A =la1, a2, a 3, a4}. Set A = l a 1, a2, ••. ,an}, where n E ~ 3,4 }. Without loss 
of generality we may assume that the elements of A have been arranged in such a way 
that a 1 < a2 < ••• < an-1 < an holds. We note that 0 < A - A, and if (0 I=) a f A - A, 
then -a f A - A. Hence the elements of A - A can be arranged in an increasing order 
-a < • • • < 0 < • • • < a, where a is the largest integer and -a obviously the smallest 
integer in A - A. On the other hand the integers in A + A can be arranged in the order 
2a1 < a1 + a2 < ••• < a, + an-1 < 2an, where 2an is the largest integer, an + an -1 the 
second largest integer, 2a1 the smallest integer, a 1 + a 2 the second smallest integer of 
A + A. Since A + A = A - A, we get -2an = 2a1 and an + an 1 = -(a1 + a2). If n = 3, 
then we have a1 = -a 3 and a3 + a2 = -(a1 + a3). This gives a 2 = -a3, forcing a 2 = 0. 
Hence A = ~ a1, 0, -a1} = -A. If n = 4, then we have a 1 = -a4 and a 4 + a 3 = -(a1 + a 2). 
This gives a3 = -a2 and hence A = l a 1, a 2, -a2, -a1} = -A. This completes the proof. 

(Solved partially by Goh Koon Shim and Loh Hung Leong) 

*P5/78. Let a 1, ••• ,am-1 (m > 2) be positive integers such that each is coprime to 
m. Prove that there exists a subset li1o ... ,h} of ~1, ••• ,m-1} such that a-1 ••• a;k- 1 
is divisible by m. 

(Via Louis H. Y. Chen) 
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Solution: 

We are given (m- 1) positive integers ah ••• ,am-1(lll: > 2) such that each is coprime 
to m. Let us define (m- 1) integers b1, ••• , bm- 1 by b; = k~ 1 ak, for each i E ( 1, ••• ,m-1 }. 
Then each b; is a positive integer prime to m. For each i E ( 1, ••• , m-1}, let b; = r; 
(mod m), where 0 .::; r; .::; m- 1. Since (b;, m) = 1, we have r; :;::. 1. There are therefore 
precisely (m - 1) integers r1 , ••• , rm_1, where each of them lies in ( 1, ••• , m - 1.} Thus 
one of the following cases must occur : 

(i) there exists some k E ( 1, ••• , m - 1} such that rk = 1 ; 

(ii) there exist distinct integers k and l in ( 1, ••• , m - 1} such that r k = r i• 

k 
If (i) holds, then b k = 

1
-:!:

1 
ai = 1 (mod m), and we are done. If (ii) occurs, then 

b k = bl (mod m). Assume without loss of generality that l > k. ·Then we have a1 a2 ••• a k = 
a 1 a2 ••• akak+1 ••• at(m). Since (a;, m) = 1 for each id1, ••• ,m- 1}, it follows that 
a k+1 .•• al 1 (mod m). This completes the proof. 

Remark In connectim with this problem we would like to mention the following theorem 
due to Euler : 

Let m be a positive integer larger than 1. If a is a positive integer such that (a, m) = 1, then a <P<m) = 
11m), where ¢<m) denotes Euler's ¢-function of m, which is the number of positive integers which are less 
than m and prime to m. 

A book-voucher. prize of $5 has been awarded to Goh Koon Shim for the solution of 
of Problem 1. 
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