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HISTORY OF NUMERICAL ANALYSIS 

J.L. Lions 

I will start with three or four preliminary remarks; then I will give a plan of 
my lecture. If some time is left, I will give my lecture. The first remark is that in 
the history of humanity we are told that there are two periods: BC and AC, and by 
this we mean "before computers" and "after computers". 

Now the second preliminary remark. When I was shown this title, I did not 
know that Professor Dieudonne was going to be in the audience; otherwise, I would 
have chosen another title. As he has shown you in the first lecture, he knows the 
history of mathematics, which is not so in my case. So this was a bad choice. What 
I really intend to speak about is really the chronology of the main ideas of numerical 
analysis, say from 1910 until 1985. So this is a special way of doing history. 

Now the last remark before I give the plan of the lecture is the fact that nu
merical analysis in itself is not a really interesting subject. But I think it is fascinating 
as it is connected with humanity. Firstly, it is connected with technology. In order 
to do numerical analysis, you essentially need a machine. This was true even long 
before the computers. And secondly, it is connected with a large number of chapters 
of mathematics; in particular, to ordinary differential equations, partial differential 
equations, functional analysis and a little number theory. Probably other things in 
algebra and combinatorics also. This is why numerical analysis did not appear as a 
title in the classification of Professor Dieudonne. It is connected with things which 
appear in Professor Dieudonne's picture. 

The plan of the lecture will be like this: 
1. 1910- 1940. 
2. Analog computers. 
3. World War II. 
4. 1950- 75. (I) Connections with physics. 
5. 1950 - 75. (II) Conections with management. 
6. Where do we stand in 1975? 
7. Parallel computation. 
8. Software. 
9. 1980-85. 

In (1 ), there are two ideas, and in (6), there is something of an "energy crisis" which 
I will try to explain. And (7) is the result of this energy crisis. I plug in (8) to make 
some French propaganda and there I will take out my French flag. 

We start with 1910- 1940, and there are two interesting things which happen
ed during that time and which are connected with numerical analysis. I assume you 
know what numerical analysis is about. One has to compute things and to compute 
things connected with a model -a model of the real world, physical, chemical, etc. 
So in 1910, there appeared, I think, the first paper in modern numerical analysis. 
And it was the paper of a man named Richardson, an Englishman working in me
teorology. In 1910, he published a paper which is wrong, and so Richardson is 
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famous for his completely wrong paper which is, I think, an interesting counter
example. It is known as the Richardson counter-example. 

Consider the heat equation for an infinite bar: 

au a2 u 
Tt- ax2 = O, 

where u = u(x, t) denotes the temperature of the bar at point x and time t. In 
numerical analysis, we want to get approximations of the differences of u. Essen
tially, we discretise everything: we go back to the definition of the derivative and 
replace the derivative by the quotient difference. So we introduce a network, say 
h, 2h, 3h, etc. on the x-axis, and tot, 2 tot, etc. on the t-axis (Fig. 1 ). 
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Fig. 1 

Now we replace the partial derivatives by differences. Let us denote u(jh, n tot) 

by u~, where the lower index refers to space and the other index to time. Replace 
J 

the second order partial derivative by (u~ 
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)/h2 • In replacing the 
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derivative with respect to time, we have a choice. It is the beginning of a story. 

Now Richardson had a very clever idea. He chose to make this symmetric by taking 

the approximation (u" : 1 
- u" -:- 1 )/2 tot, and then he was in trouble because now 

J J 

we know these approximations do not converge. This can be proved in a very simple 
way. Starting with a given temperature at time 0, you can compute the temperature 
at time 1. But if you are given the temperature at time 1, you cannot find out what 
happens before. It is irreversible. The backward problem is unstable. But the differ
ence equation 
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h2 = 0 

is completely symmetric, and if the approximation was convergent, it would give 
you something reversible, which is impossible. Of course, a more precise proof can 
be given. 
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So in 1910, what does it show? There are difficulties: you cannot just replace 
the derivatives by something which you think is reasonable. You have to be careful, 
you cannot make an approximation in a completely random way. 

Then the next very important thing happened in 1928. This is not because 
that was the year in which I was born, but because there appeared a paper by 
Courant, Friedrichs and Lewy. They discovered something absolutely fundamental 
and simple. They considered the wave equation in two variables with given initial 
data: 

()2 u ()2 u 
ot2 - ox2 = O, 

u(x, 0) = f(x), 

ou(~~ 0) = g(x). 

This describes the displacement of an infinite vibrating cord. Now again we play the 
same game as before by introducing a network in the xt-plane and using the folio
ing most natural approximation: 

u
1
.+" 

1 
- 2u~ + U. n 

J J-1 
h2 = 0, 

subject to u? = f(jh). If we let h and bot tend to zero, the approximation should 
J 

give the solution. Although it was trivially simple, they were the first to observe that 
if you do not impose a condition on h and bot, this is not going to work, and this is 
extremely elementary. 
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Fig. 2 
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It is connected with the fact that for the wave equation, you have the so-called 
domain of influence. The value of the solution of the wave equation at the point 
P(x 0 , t 0 ) depends only on the initial data on the segment OR (Fig. 2) of the x-axis 
cut out by the lines PO and PR with equations x - t = x 0 - t 0 and x + t = x 0 + t 0 
respectively. Conversely; the set of points (x, t) at which the solution is influenced 
by the initial data at a point S(x 0 , 0) is the region bounded by the lines SU and ST 
with equations x + t = x 0 and x - t = x 0 respectively (Fig. 2). This region is called 
the domain of influence. Thus if the initial data f(x) and g(x) are given on the seg
ment A8 of the x-axis, then the set of points at which the solution is affected by 
these given values of f and g is the region bounded by the lines A8, AD and 8C 
where AD and 8C have gradients -1 and 1 respectively (Fig. 3). In a sense, f and g 
propagate a wave. 
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If we look at the approximation to the wave equation, we see that in order to 
compute the value of u at the lattice point (j, n + 1 ), we have to know the values of 
u at four other lattice points (Fig. 4). If the solution is known up to AB (Fig. 4), 
then the solution is uniquely determined in the triangle ACB, where AC and BC have 
gradients 1 and -1 respectively. If I ~t/h I <; 1, then the approximation provides a 
"solution" in a region not reached by the continuous solution. In the limit, we will 
get a contradiction. In this manner, we see that the approximation converges if and 
only if l~t/h I <; 1. This is a stability condition which plays a fundamental role in 
numerical analysis. 

Why were these people doing that? As I have said before, the modern compu
ters had not arrived at that time. What they were interested in was proving theorems 
using the approximation. They were interested in solving partial differential equa
tions by approximation. After all if you do not know how to solve them, the natural 
idea is to replace these complicated looking equations by something that looks more 
elementary. So the idea was: let us consider these approximations, solve these 
and pass to the limit, and in this manner we will obtain a solution of the equation 
that we want to solve. 

That was before 1940. So except for one particular case in meteorology, 
mathematicians were not interested in getting numbers. But there were the engineers 
and the engineers needed the numbers. For instance, the first computer work was 
done in the aircraft industry. It was done with analog computers. The details have 
nothing to do whatsoever with numerical analysis or mathematics, and I must con
fess that I do not know the details. 

The general idea of analog computers is quite interesting. It uses double model
ling. What you do is this. You have a problem in the aircraft industry. Suppose you 
end up with solving some kind of boundary value problem, say Laplace's equation. 
This is a modelling of a real phenomenon. You start with an aircraft and you have, 
as a model, a boundary value problem. Now the idea is that with electricity you 
can realise a lot of things that enable you to compute. With the railway electric 
tank, you can compute. You can also model them using general laws of electricity, 
and thanks to these tanks, you can have numbers. Since we have a model which 
corresponds to the aircraft and if you manage to build some kind of tank with this 
sort of device then we will get numbers and solve the problem. 

Electricity Model 

1 
Tank Compute 

This idea was extremely powerful until 1945 and essentially came to an end. There 
are two Frenchmen Peres and Malabard, who contributed a lot to this. 

What was going on as far as computing was concerned? There were essentially 
two plans: one in trying to solve equations using numerical analysis and the other in 
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analog computers. Then came World War II which had one good consequence as 
far as computers were concerned. One is that Turin, in London, started to work on 
practical problems and to think about the Turin machine, and that von Neumann 
did the same thing, but with different techniques, in Princeton. And then, there 
were advances in electronics, plus the need to perform computations in situations 
where experiments were extremely dangerous. So it means brains, advances in 
physics and the need of making computations. From all that the first modern com
puter was born. This was the JONIAC and this was 1945/46. To give you a rough 
idea of speed: essentially the number of arithmetical operations that you can make 
in one second using analog computers was about 102 , but with the computers of 
World War II the number of operations per second is 103 • So with the computer of 
von Neumann there is already a discontinuity in the capacity of making operations 
and also with respect to flexibility. You can apply it to any kind of model. With 
analog computers, you have a model and then you have to build an appropriate 
tank; it is not "multi-purpose". So there are really two discontinuities. 

Then excitement started in 1950. Now I am going to explain what is in (4) 
and (5). Two topics, two ideas, and two motivations. Because of the motivation 
coming from mathematics (as I have mentioned before, the work of Richardson, 
Courant, Friedrichs and Lewy) there is available a method which could be applied 
immediately to the computers. This led to the application of computers to the 
numerical approximation of partial differential equations, and started a fantastic 
industry which is far from being complete. The main idea here comes from essential
ly two or three sources. There is a limited number of ideas introduced but an infinite 
number of applications of these ideas. The main idea is the so-called "finite element 
method". Essentially, it was invented by an engineer in structural mechanics but 
then it was realised by a mathematician that it was universal, that it has nothing to 
do with structural mechancis and that this idea can be applied to all fields. 

The idea is really trivial if you think in terms of functional analysis. You have 
a problem in the calculus of variations where you want to minimise a functional 
J over a given function space V: 

inf J(v), 
veV 

where V is a Hilbert space. This is a "real" problem. The idea of the finite element 
method is to consider a subspace Vh of V which is a good approximation of V in the 
sense that Vh should converge to V as the parameter h tends to 0. And then there 
are tricks on how to construct these approximations. Finite element experts are 
some kind of artists who construct good approximations of V. The meaning of 
"good" is not clear. Nobody really knows. This depends on the cleverness of the 
people who invent the method. Of course, there are some recipes in which these 
spaces are not too complicated and lead to algebraic problems involving matrices 
which are not too complicated (the so-called sparse matrices). But this is not enough, 
and that is why there are tons of papers, not without interest, published on these 
topics, and this is still going on. 
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Other ideas were introduced by von Neumann himself and the most famous 
is the method of artificial viscosity which is absolutely fundamental and is used in 
many situations. Von Neumann was interested in solving problems in which shocks 
occur with discontinuities. And these create a terrible problem for the computer. 
People did not know exactly what to do. Von Neumann realised that the best way 
to treat these shocks was to suppress the shocks by essentially regularising argu
ments. The artificial viscosity method consists in introducing a regularising factor 
which suppresses all these discontinuities. But nevertheless it gives just enough of 
the discontinuity: you replace something like 

I 
by something like 

There was a fantastic excitement generated by computers among people in 
physics, astrophysics and engineering sciences. So people in management also want 
to do something about this. And it is at this time that the idea of linear program
ming by Dantzig appeared in 1948, which is, by the way, a completely trivial idea. 
I think he just introduced the right idea at the right time. Others have the same idea; 
for instance, Aronszajn. Very few people realise Aronszajn had the same idea, but 
he did not know what to do with the idea. This generated a fantastic excitement in 
operations research. Then, later on, people in economics showed that they can also 
invent models and use linear programming. But this was not enough because the 
models were non-linear and the objective functions were not quadratic. So this 
led to non-linear programming, integer programming. We started from numerical 
analysis and here we are moving through combinatorics and certainly number theory 
(because of integer programming). 

The difference between problems in physics and problems in management is 
that the problems in management are much more difficult and, as a result, they are 
not solved. The reason is that if you want to find something optimal in manage
ment, then you end up, if you use, for instance, dynamic programming introduced 
by Bellman, with fantastic difficulties connected with dimension. When you model 
the physical world you end up with essentially a non-linear partial differential 
equation and the number of variable is three or four, and not more. In management 
problems the number of independent variables can be 100 or 1000. So we have a 
fantastic problem connected with management; maybe it has no solution. 

In 1975 we have an energy crisis in computers because in 1975 computers were 
able to do 106 or even n x 106 operations per second, where n = 1, ... , 5, and 
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people started to realise there is a limit set by the speed of light which allows you to 
make additions and multiplications. So here we have a limit and we are approaching 
this limit. We are approaching the limits of natural resources. As we in France think, 
if we do not have oil and we need it, we must have new ideas. And it is around 
1975 that people introduced a completely new idea: parallel computation. We are 
approaching the limits of what we can do with one computer. No computer will 
be able to perform, say 1010 operations per second. However, why not use 103 

computers at the same time? Now conceptually this is alright but from the practical 
viewpoint it looks crazy for at least two reasons. Firstly, who can afford to buy 
103 computers? But this is not as ridiculous as it looks because the cost of com
puters is going down. For $1000, I think you can make the same amount of compu
tation as it was possible in 1960 on the largest available computer. If you compare 
the price of computers with that of automobiles, the decrease is fantastic. So it is 
not ridiculous any more to use a large number of computers, and I will return to 
that because it means you can now use computers in a cheap way. The second point 
is what about the software? How to organise such a horrible thing? After all, to use 
a computer is not trivial. You have to speak to the computer. Now how do you 
speak to 103 computers at the same time? So modulo these two points this idea 
could be good. 

Let me give you an example. Suppose you want to compute an approximation 
of the heat equation 

au A f . R3 at- uU = In 

The idea is to introduce several operators. For example, we have the parallel 
algorithm 
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... ( 1) 

... (2) 

... (3) 

... (4) 

I am not writing down the details of the approximations. Now one computer 
will compute approximation (1), a second will compute (2), a third will compute 
(3), all in a non-sequential manner. Then I need a fourth computer which is assigned 
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to do the average in (4). In this way, of course in a more sophisticated way, com
puters are made to perform 103 x 106 operations per second. We are close to some
thing new. 

Now I open my French flag to tell you two things on where the difficulties 
are. The difficulties are in numerical analysis (always) and in modelling and also 
in the software, that is, in the programming languages which enable us to communi
cate with computers. Along these lines, I would like to indicate two things which are 
important. One is the modular programme. Not because it has a historical impor
tance but because I think it indicates a good trend. The idea is to write programmes 
in a common, single and unified way so that people can exchange their programmes 
and not spend too much time in duplicating each other's programmes. Along this 
line, I want to indicate that recently in France people in private industry and also 
State engineers have been able to invent a language which has been accepted by the 
Department of Defence in the United States. That means this language is going to 
be an extremely important language all over the world. I mention this not becuase it 
is French but because I know the people who work there. And the people who work 
on these programmes and languages are people who are trained in logic and combina
torics and who have the equivalent of a Ph. D. It is an important fact that mathe
matics, even pure mathematics, can be connected with software and this was known 
at least 20 years by von Neumann. The fact that it is connected with an industrial 
language shows that in this business of computers, intelligence, hard work and 
research pay. It is better to know some mathematics to do these things. 

The history from 1980 to 1985. This is not presumptuous because the ana
logous thing in pure mathematics would be just ridiculous. In numerical analysis 
it is different because it is so much connected with technology and with computers. 
This needs the work of large teams and you do not create such teams overnight. 
So one can really understand what is going to happen in the next five years. Essen
tially, what is going to happen is easily described. There will be supercomputers, 
each making 103 x 106 operations per second, and for some time these computers 
will be in the United States only. On the other hand, industry is thinking along the 
lines of supercomputers and in a completely opposite way along the lines of so
called "microprocessors" which are extremely tiny computers and are very cheap, 
of the order of US$100 each. The difficulty is that they come without any software 
and you have to use several microprocessors at a time in order to get a machine, 
and this is connected with parallel computations. 

Before concluding my lecture, I want to mention that microprocessors are 
extremely important for two reasons. First, you will have cheap home-made compu
ters with mathematicians and electrical engineers using 20 of these microprocessors. 
With electrical engineers and mathematical brains, you will have computers which 
can do a lot of things. Secondly, microprocessors should be taken into account 
in education. I do not yet know how. There are a lot of people thinking about 
this. The fact that now you can have these things in schools obviously has some 
importance for education. 
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