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Geometry studies the properties of our space. Physics studies physical pheno
mena. As the latter takes place in space, geometry forms the natural basis of a physi
cal theory. By experience our space is of dimension three; in analytical geometry we 
describe a point by three coordinates. By its very nature geometry is simpler than 
physics. It was possible to establish the subject on a set of simple axioms and to 
deduce the properties of the space through logical conclusions. The great achieve
ment of Euclid has profoundly affected the thinking of mankind. For centuries 
Euclid was not only a book on geometry but also a book on logic. On close scrutiny, 
however, not all the Euclidean axioms are simple or evident. The classical example is 
the Fifth Postulate which says that if two lines are cut by a transversal and if the 

angles a and (3 have a sum less than 180°, the two lines will intersect when extended 
in these directions. An important consequence of this axiom is the beautiful theo
rem that the sum of the angles of any triangle is 180°. Efforts to prove this axiom as 
a logical consequence of the other axioms resulted in failure, a happy failure which 
led to the creation of the non-euclidean geometries, by J. Bolyai, Gauss, and N.l. 
Lobacevskii. The discovery of the non-euclidean geometries was one of the great 
human intellectual triumphs. 

In spite of the success of Euclid it is not clear why our space should be Eucli
dean. The great French mathematician Henri Poincare held the view that Euclidean 
geometry surpasses other geometries based on axiomatics by its "simplicity". Even 
if the latter is accepted as a criterion, what is simple to one may not be simple to 
others. A serious effort to solve the space problem was made by Hermann von Helm
holtz in 1868, which was to rely on the axiom of free mobility in space [ 1]. This 
led to the Euclidean and non-Euclidean spaces. Except for Poincare's view I see no 
other reason why our space is Euclidean and not non-Euclidean. It is remarkable, 
and indeed mysterious, that the application of axiomatic Euclidean geometry to 
daily problems has not led to a contradiction or an absurdity. This should be the 
strongest argument supporting Euclidean geometry. 
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Geometry and Physics 

Can the choice of geometry be decided by physics? A natural process is to 
relate the motions of the three-dimensional space with the motions of rigid bodies. 
In practise, however, the form of a body is affected by temperature, external force, 
etc., and is not rigid. This led Einstein [2] to the conclusion that physical laws are 
a combination of geometry and physics, in symbols (G)+ (P), and physics does not 
determine (G). If modifications are necessary, he would change (P), but not (G). 
He went on to say: "If mathematical theorems are related to reality, they are not 
certain and if they are certain, they are unrelated to reality." 

In any case Euclidean geometry fits well with Newtonian mechanics. 

Groups of Transformations 

In the 18th and 19th centuries projective geometry flourished. Projective 
properties, based on projections and sections, do not involve metrical concepts. 
There were also other geometries, such as line geometry in space, circle and sphere 
geometries, etc. This prompted Felix Klein to formulate in 1870 his Erlangen 
Program which aimed at a unification of geometry. Klein defined geometry as the 
study of the invariants of a space under a group of transformations. Euclidean and 
non-Euclidean geometries fall under this program by the Cayley-Klein model. As a 
result the same analytical conclusion can often be interpreted to give entirely 
different geometrical theorems. 

Among the geometries in the sense of Klein is Minkowski's geometry which 
plays a fundamental role in the special theory of relativity. A four-dimensional 
Minkowski space is the space (x, y, z, t) provided with the quadratic form 

0 = x2 + y2 + z2 _ t2. 

Minkowski geometry is the study of the invariant properties of the space under the 
group of linear homogeneous transformations on the coordinates x, y, z, t, which 
leave Q invariant. The group has also a geometrical interpretation in sphere geometry. 
It is essentially the group of all contact transformations in space which map spheres 
into spheres and planes into planes. The corresponding geometry is called Laguerre's 
sphere geometry. 

Riemannian Geometry 

A most profound achievement in geometry was Riemann's creation of Rieman
nian geometry in 1854. In providing a theoretical foundation of geodesy Gauss 
published in 1827 a paper entitled "General investigations of curve and surfaces". 
This should be considered the birth certificate of differential geometry; before that 
differential geometry was a branch of the infinitesimal calculus concerned with its 
geometrical applications. Gauss showed that metrical geometry on a surface can be 
developed locally, i.e., in the neighbourhood of a point. Riemann developed the 
Riemannian geometry for a high-dimensional abstract manifold, thus giving a grand
iose generalization of Gauss's work. Riemann's paper was his "Habilitationsvortrag". 
Gauss was in the audience and was deeply impressed. 
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Relativity 

It was remarkable that these two important developments in geometry had 
their respective effects on physics: Minkowski geometry on the special theory of 
relativity and Riemannian geometry on the general theory of relativity. When 
Einstein developed his general relativity theory, the geometrical tools he needed 
were in existence. Through the study of electricity and magnetism it was found 
that time is not separate from space: there is only a four-dimensional space-time. 
The Minkowski space supplied the model. The space-time in the general theory of 
relativity has a fundamental quadratic differential form which is of signature+++-. 
It is called a Lorentzian space and is a generalization of the Minkowski space, just 
as a Riemannian space is a generalization of the Euclidean space. 

There are many Lorentzian spaces,depending on the choice of the quadratic 
differential form, and Einstein's problem was to find one which represents the 
physical space-time. These spaces satisfy the Einstein equations. In order to express 
them one needs the powerful tool of tensor analysis, a mathematical formalism 
adapted to the treatment of geometry in arbitrary coordinates. 

Unified Field Theory 

The special theory of relativity deals with electricity and magnetism while the 
general theory of relativity deals with gravitation. This separate status was un
satisfactory and Einstein tried in his later years, without great success, to build a 
unified field theory which would cover both electricity and magnetism and gravi
tation. Nowadays the grand design in physics is to have a unified field theory which 
covers also weak and strong interactions. 

An immediate idea for a unified field theory is to extend the basic geometric 
structure. Thus the five-dimensional space (Kaluza-Kiein) and the projective geo
metry of paths (Veblen) came into play. Einstein tried many structures, among 
which are: a non-symmetric gik. complex and hermitian geometry, and general metric 
spaces. None of the results is conclusive. 

Weyl's abelian gauge field theory [3] 

It turns out that in all the efforts at a unified field theory the most fecund idea 
was supplied by Hermann Weyl in 1918. Weyl proposed a gauge field theory in 
which he introduced a gauge potential to account for electricity and magnetism. 
Einstein expressed his admiration at the depth and boldness of Weyl's proposal, but 
gave a number of criticisms. The criticisms were valid, but could be removed by 
using a "phase potential", instead of a gauge potential. 

In the terminology of modern differential geometry Maxwell's theory of elec
tricity and magnetism is a connection in a circle bundle over a four-dimensional 
Lorentzian manifold. The geometrical object is therefore a family of circles para
metrized by the manifold. The important difference from Weyl's original theory 
is that they are circles, and not lines. (Gauge field theory is a misnomer; it should 
more correctly be called a phase field theory.) The first set of Maxwell's equations 
expresses the strength of the field in terms of the curvature of the connection. The 
second set of Maxwell's equations has also a simple geometric meaning. 
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An experiment proposed by Y. Aharanov and D. Bohm in 1959 and performed 
by R. G. Chambers in 1960 gives an electric-magnetic field in a non-simply-connected 
domain whose strength is zero, but whose phase factor can be observed. 

A circle bundle is locally a product. A fundamental mathematical question is 
whether it is globally a product. This is a sophisticated problem whose solution 
depends on developments in algebraic topology and differential geometry. It is now 
possible to describe all the distinct circle bundles over a given manifold and to give 
the "invariant" (called a characteristic class) which will distinguish the circle bundles. 

Dirac knew ( 1931) the existence of non-trivial circle bundles, i.e., bundles 
which are globally not products. He identified them with the magnetic monopoles; 
they are physically not yet identified. The corresponding invariant, an integer, is 
called a geometric quantum number. On the possible existence of a magnetic mono
pole Dirac said: "No change whatever in the formalism ... Under these circum
stances one would be surprised if Nature had made no use of it." 

Vector Bundles 

A circle bundle (resp. line bundle) is the one-dimensional special case of a 
sphere bundle (resp. vector bundle). In general a vector bundle is a family of vector 
of vector spaces (called fibers) parametrized by a manifold such that the linear 
structure on the fibers has a meaning. This is done by using the general linear group 
GL(q; R), q =dim of fiber, to match the fibers. If the group is O(q), the unit vectors 
on the fibers have a meaning and we have a sphere bundle. When the fibers are com
plex vector spaces, we use the groups GL(q; C), U(q), or SU(q). The abelian gauge 
field theory of H. Weyl discussed above is concerned with aU( 1 )-bundle. 

A vector bundle is locally a product, but may not be so globally. The simplest 
invariants to measure this deviation are called the characteristic classes. When the 
bundle is given a connection, the characteristic classes can be expressed in terms 
of the curvature of the connection. There is thus a close relationship between 
characteristic classes and local properties. 

The first non-abelian gauge field theory in physics was introduced in 1954 by 
Yang-Mills in their study of the isotopic spin. Mathematically it makes use of an 
SU(2)-bundle with a connection; the restriction on the connection is given by the 
Yang-Mills field equations. The successful unified field theory of electricity and 
magnetism and weak interactions by Salam and Weinberg ( 1967) uses the non
abelian gauge field theory. It is widely recognized that gauge field theory will play a 
fundamental role in future developments of theoretical physics. 

In 1975 Yang remarked to me: "This is both thrilling and puzzling, since you 
mathematicians dreamed up these concepts out of nowhere". Actually the de
velopment of the concepts of bundles and connections in mathematics had a long 
history, till it reached its present form [4]. In fact, if we deal with differentiable 
manifolds, then bundles are in abundance. The tangent bundle of a manifold is in 
a sense a linear approximation of the manifold. When the manifold lies in an am
bient space, all the normal vectors form its normal bundle. In the simplest case of a 
surface in the three-dimensional Euclidean space, all the unit tangent vectors to the 
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surface form the circle bundle most easily visualized. Its study is highly interesting 
and provides the clue to many more general problems. In the 30's the "Hopf circle 
fibering" S3 ~ S2 excited the algebraic topologists, because it was the first exam
ple of a continuous mapping of a space to one of lower dimension which is not 
homotopic to a constant mapping. These examples, and others, show that bundles 
occur in mathematics from different contexts. 

Why Gauge Theory 

In recent years by attending physics conferences I often heard discussed the 
question "why gauge theory"? I wish to give a justification from the mathematical 
viewpoint. 

The first notion of a function can be expressed as a map 

R ------+ R. 

This is generalized to a map 

Rm ------+ Rq, 

that is, a vector-valued function over Rm. If the domain Rm is generalized to a mani
fold M, we have a vector-valued function over M: 

M ------+ Rq, 

which in turn can be written 

M ------+ M X Rq , 

the mapping to the first factor being the identity. Conceptually this generalization 
is to replace the Euclidean space Rm by the manifold M which is only locally Eu
clidean. Manifolds play an important role in Einstein's general theory of relativity. 

Some generalization should be made on the range M X Rq, and a natural step 
is to replace it by a general vector bundle E. Then the generalization of a vector
valued function on M is a "section" 

M ------+ E, 

which assigns to a point of M a point on its fiber. Sections generalize vector fields 
or tensor fields and form an important object in mathematics. It must be more than 
coincidence that this generalization is also important for the applications of mathe
matics to physics. 
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