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In mathematics, we are concerned with statements about the entities of a cer
tain system. This system is a closed system in the sense that every term has a definite 
and rigid meaning, and rules for manipulation of these terms always lead us back 
into the system. To use a crude analogy, a mathematical system is like a chessboard 
in which the pieces have fixed capabilities and incapabilities, and the transition of 
one chess position into another is governed by strict rules of movement of the 
pieces. The whole business of mathematics is to formulate statements about a 
given mathematical system and to examine which of them are true. The method of 
establishing or refuting a given statement is condensed into a series of propositions 
constituting a so-called mathematical "proof". The vehicle by which these proposi
tions are transported to their final conclusion is governed by strict rules of logic. 

There is in mathematics a powerful method of proof known as "reductio ad 
absurdum" (Latin phrase: "reducing to absurdity") or commonly referred to as 
"proof by contradiction". Its reasoning is based on the fact that given a mathemati
cal statement S, either S is true or else not-S (negation of S) is true. S and not-S 
cannot be both true. (Of course, in ordinary language, there are statements for 
which we cannot say whether "it is true" or "it is not true". For instance, "Today 
is Monday" is a statement which depends on time and place.) "Proof by contradic
tion" is an indirect proof. Instead of reaching our desired conclusion starting from 
true premises and using syllogistic arguments, we first assume the truth of the ne
gation of our desired conclusion. As G.H. Hardy puts it, it is like a chess gambit: 
we are giving away our game. But like a gambit, the successive moves proceed to 
demolish the pillars on which our mathematical system is built. We finally reach a 
situation in which contradictions are generated within the system. We could do one 
of two things: throw away the whole system or throw away the assumption that 
we started off with. If our system is sound, it is obvious what we should throw 
away. 

One of the classical examples of proof by contradiction is the proof that y2 
is irrational. First of all, what is meant by "irrational"? An irrational number is, 
of course, a number which is not rational, and a rational number is one which can 
be written in the form m/n, where m, n are integers and n =I= 0. The proof proceeds 
as follows. Assume that y2 is rational; i.e.y2 = m/n where m, n are integers, n =I= 0. 
Since we may cancel off common factors of m and n, we may further assume that m 
and n do not have non-trivial common factors. We have 2n2 = m2 • It follows that 2 
divides m2 and hence m. Let m = 2m 1 • Then 2n2 = 4m~, or n2 = 2m~. This means 
that 2 divides n2 and hence n. At this stage, let us sum up the situation: our assump
tion that y2 = m/n, where m and n are relatively prime, leads us to the contradic
tion that m and n have 2 as a common factor. Therefore we conclude that y2 is 
irrational. 

*Text of a talk delivered at Anglo-Chinese Junior College in 1979. 
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Another old story is Euclid's proof that there are infinitely many primes. A 
prime is an integer (~ 2) whose only positive factors are 1 and itself. Thus the se
quence of primes starts off with: 2, 3, 5, 7, 11, 13, 17, 19, 23, .... "Common
sense" may indicate the possibility of going on indefinitely, but anyone who has 
tried to test whether a large integer is a prime will appreciate the formidable numeri
cal difficulties. There is as yet no way of writing down as large a prime number as 
we like. 

Now for the proof. Suppose that there is a finite number of primes, so that 
there is one, N say, which is the largest prime. Consider the integer M = N! + 1. 
Either M is prime or it is not. If it is a prime, then M > N, contradicting the nature 
of N. So M cannot be prime. It must be divisible by some prime p say. Now, if we 
look at M closely, it is not divisible by all the primes from 2 to N inclusive. But p 
must be one of these. This is again a contradiction. Hence such a prime N cannot 
exist; and so the number of primes must be infinite. 

There is an interesting episode in the history of mathematics in which genera
tions of mathematicians attempted to use the method of proof by contradiction to 
prove an impossibility. For a long time before the 19th century, there was a belief 
that Euclid's "Parallel Postulate" could be proved from the rest of his axioms or 
postulates. An equivalent formulation of the "Parallel Postulate" is: "Through a 
given point not on a given (straight) line there can be drawn exactly one line parallel 
to the given line". One of the most well-known efforts to prove this was made by 
the Italian geometer Saccheri (1667-1733), who, in fact, tried to derive contradic
tions from the assumption that the Parallel Postulate is false. It was known to him 
that the Parallel Postulate is equivalent to the statement: ''The sum of the angles of 
any triangle is 2 right angles". He did succeed in showing that the assumption that 
the angle sum of a triangle is greater than 2 right angles leads to a contradiction. 
However, his proof that the angle sum of a triangle cannot be less than 2 right angles 
is erroneous. With hindsight, we know that he could not have succeeded anyway. 
Since the discovery of non-Euclidean geometry by J. Bolyai (1802-1860) and 
Lobachevskii ( 1793-1856) in the 19th century, the Parallel Postulate is known to 
be independent of the other axioms of Euclid. 

We outline the proof by Legendre (1752-1833) that the angle sum of a trian
gl~ is less than or equal to 2 right angles, without assuming the validity of the 
Parallel Postulate. The proof is again one by contradiction. 

BJ .............. Bn-1 

A4 ............ An 
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Let A 1 8 1 A 2 be a given triangle. On the line through A 1 A 2 produced, construct 
congruent triangles Ai8iAi+l• i = 2, 3, ... , n, where A 1 A 2 = A 2 A 3 = ... = AnAn+l· 
Let the angles of triangle A 1 8 1 A 2 be ex, {3, 'Y (see figure). We wish to show that 
ex + (3 + 'Y < 2 right angles. Suppose that ex + (3 + 'Y > 2 right angles. Then since A 1 , 

A 2 , A 3 lie on a straight line, ex+ (3 + -y1 = 2 right angles, where -y 1 =angle 8 1 A 2 8 2 , 

sothatex+{3+-y1 <ex+(3+-y,i.e.-y1 <-y ThenA 1 A 2 >8 1 8 2 ,A2 A 3 >8 2 8 3 , ••• , 

AiAi+t > 8i8i+t• ... , An-tAn> 8n_ 1 8n. (Since A 1 , A 2 , ••• , An+t are colli
near, we have A 1 8 1 + 8 1 8 2 + ... + 8n_ 1 8n + 8nAn+t > A 1 An+ 1 , i.e. A 1 8 1 + 
(n-1)8 1 8 2 + 8 1 A2 > nA 1 A 2 , i.e. A 1 8 1 + 8 1 A 2 - 8 1 8 2 > n(A1 A 2 - 8 1 8 2 ). 

Now A 1 A 2 - 8 1 8 2 > 0 and n is arbitrary. If we choose n large enough we get a 
contradiction (of the axiom of Archimedes). 

So far our examples are taken from very classical, if not ancient, mathematics. 
As a contrast, we give an example of proof by contradiction from mathematics of 
recent vintage - if one may consider one hundred years ago as recent enough. The 
subject itself has only been recently introduced to elementary levels of education. 
We are referring to set theory. We are all aware of the controversy raised by the in
troduction of sets at the primary school level at the expense of the more traditional 
topics. Perhaps it may interest you, if not console you, to know that the introduc
tion of infinite sets by the German mathematician Georg Cantor ( 1845-1918) in 
1882 raised an outcry against what were then philosophically unfamiliar and shaky 
notions like uncountability. Since then the foundations of mathematics appeared to 
be undermined by the underlying philosophical quicksand. Fortunately for mathe
maticians the further sinking of the foundations was prevented with concerted and 
concentrated repairs and reconstruction, and mathematicians continue to make their 
honest living and you continue to invite them to deliver talks. 

To return from the quagmire of historical controversies and intellectual con
frontations, let us adopt the attitude and mentality of a bright-eyed naive novice 
with an open and receptive mind. (As a matter of fact, there is a part of set theory 
which is known to mathematicians as "Naive set theory".) Let us play with infinite 
sets as if they were as tangible as toy blocks were to a child. Therefore we assume 
everybody knows what a set is. Take a set S. If we can count all its elements in a 
finite number of steps or in a finite interval of time, then we say that S is a finite 
set. The process of counting involved here is really a mental process rather than an 
actual physical process. On the other hand, if we cannot perform such a task, then 
we naturally call S an infinite set: for example, the set of integers or the set of 
prime numbers. The revolutionary break-through which Cantor achieved lies in 
his audacious attempt to "count" infinite sets. 

The most "natural" infinite set to look at, at least to the mathematicians, is 
the set N = { 0, 1, 2, ... , n ... } which is naturally called the set of "natural" num
bers. We could ramble off the elements of N one after another, though without 
coming to an end, in a manner reminiscent of counting, so we call the set N "count
able". There are, of course, other infinite sets whose elements could be "counted" 
off in such a fashion, such as the set of positive even integers { 2, 4, 6, ... } . Thus 
we make the following definition. A set X is said to be "countable" if there is a one
to-one mapping from X onto N. For example, if X= {1, 4, 9, 16, ... , n2 , ••• }, the 
mapping f: X~ N defined by f(n2 ) = n-1, n = 1, 2, ... , is one-to-one and onto, and 
so X is countable. 
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A moment's reflection may give one an uneasy feeling that there are "as many" 
perfect squares as there are natural numbers. However, counting no longer has its 
physical meaning and we are beginning to get slightly detached from the world of 
physical reality. We will rely only on the inflexible rules of logic; physical intuition 
will fail us. The question to ask is then: "Are there sets which are not countable?" 
Indeed there are, and lots more of them. 

We show that the set of positive real numbers less than 1 is not countable. 
Let X = { x E IR : 0 < x < 1 l . The proof is again one by contradiction. Assume 
that X is countable. What does that amount to? It means that we can list all the 
members of X one by one, starting from a real number which we designate the 
first (or perhaps the zeroth), then a second, a third, and so on, and the listing will 
exhaust all of X. For this purpose, we will use the decimal representation of real 
numbers. Any positive real number less than 1 may be written in an infinite decimal 
form 0 . a1 a2 ••• an ... where each ai is one of the numbers 0, 1, ... , 9. However, 
there is a slight snag: we must make sure that each member of X is listed exactly 
once, and there are different-looking decimals which represent the same number, 
such as 0 · 099 ... 9 ... and 0 · 10 ... 0 ... 0. This is easily overcome by adopting 
the rule that we disallow all decimal representations with an infinite chain of 9's. 

So if the above list could be drawn up, we could exhibit it in the form: 

x 1 O·a 11 a12 ... atn··· 

x 2 0 · a21 a22 ••• a2n · · · 

We now come to the following contradiction. No matter how the list is made, we 
can always find a positive real number less than 1 which is not in the list (which is 
supposed to exhaust the set X). This will then destroy the possibility of the exis
tence of such a list and so X cannot be countable. 

Now, how do we create the above contradiction? We define our desired number 
as follows. Choose a b1 not equal to a11 or 9, a b2 not equal to a22 or 9, and so 
on, and in general, a bk not equal to akk or 9. Bear in mind that each of these bk are 
chosen from 0, 1, ... , 8. Look at the number b = 0 · b1 b2 ••• bk .... It does not 
have an infinite chain of 9's and is certainly in X. Yet b =I= Xk since it differs from 
Xk at the kth place of decimal. 

The above proof is also called a "diagonal" argument for obvious reasons and 
is first given by Cantor himself. The implications and repercussions on mathematics 
were tremendous. Eyes were literally opened towards new horizons. The existence 
of the so-called "transcendental" numbers was immediately revealed without even 
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giving an inkling asto what one such number could be. Thiswas a disturbing thought 
to many mathematicians at that time. There have been well-known transcendental 
numbers like n and e. But the proofs that they are transcendental are difficult. In 
fact, not too many transcendental numbers were known, especially at that time. 
And yet here is a proof that claims that multitudes upon multitudes of these crea
tures abound. The intellectual shock must have been great. 

The existence of a mathematical object is sometimes claimed by showing 
that its non-existence leads to a contradiction. More often than not, such a proof 
does not actually produce the object. At the end of it, we may not know its value 
if the object is a number say, nor do we have a procedure or algorithm for finding 
it. Partly for this reason, some mathematicians, the so-called intuitionists and con
structivists, do not find such a proof acceptable. But by and large, the majority 
of mathematicians are not prepared to renounce the treasury of results obtained 
by such proofs. A particularly effective application of proof by contradiction is in 
establishing the non-existence of a mathematical object. This is of course, universally 
acceptable and is a very powerful weapon in the advancement of mathematics. 

ANNOUNCEMENT 

The next International Congress of Mathematicians will be held in Warsaw, August 
11 - 19, 1982. The Chairman of the Organising Committee is Professor Czeslaw 
Olech. 

The Singapore Mathematical Society will hold an International Mathematical Con
ference in conjunction with the Department of Mathematics, National University 
of Singapore at the National University of Singapore on June 1-13 1981. 
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