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At the International Congress of Mathematicians held in Paris in the year 1900, 
David Hilbert presented twenty three mathematical problems whose solutions he 
believed would greatly advance twentieth century mathematics. The professor from 
the University of GHttingen in Germany was at this time considered one of the 
world's two leading mathematicians (the other being Henri Poincare of France), and 
it was therefore not surprising that all of the problems were taken very seriously by 
his and subsequent generations. Indeed the mathematical community has since often 
use.d the state of knowledge of the Hilbert problems as a yardstick to appraise the 
advances of contemporary mathematics. A number of these problems have been 
satisfactorily solved, among which is the Tenth Problem. 

Hilbert's Tenth Problem is quite easily stated. Given an equation x 2 + y2 = 1, 
it is not difficult to see that this is the equation of a circle with radius 1 centered 
at the origin. Any point (x, y) lying on the circle is a solution to the equation. But 
suppose that we require x and y to be both integers. Then there are only four 
solutions, namely (1, 0), (0, 1), (-1, 0), (0, -1). Now consider the equation 
x 2 + y 2 = 3. This is the equation of a circle with radius~centered at the origin. 
Again any point (x, y) lying on the circle is a solution to the equation. But it is not 
difficult to see that there are no integers x andy for which (x, y) solves x 2 + y2 = 3. 
One argues as follows: since x, y must be integers and the square of an integer is 
always non-negative, we know that the following are the only possibilities: 
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As there are no integers whose squares are 2 or 3, there does not exist integral 
solution to (1), (2), (3) or (4), and so x 2 + y2 = 3 has no solution in integers. Thus 
asking for integral solutions is a more demanding question, and the answer may be 
either yes or no, even though the equation given may have solutions in real numbers. 
A polynomial equation whose coefficients are integers is called a Diophantine 
equation. This is named after the Greek mathematician Diophantus who wrote a 
book treating this subject. Thus for example x 2 + y7, = 3, 4x 5 - 2x2 + 3 = 0 are 
Diophantine equations, whereas x 3 + yl2 y2 + y = 0 is not, since the coefficient 
..j2 is not an integer. A Diophantine equation can have any number of variables, e.g. 

2x1 + 3x2 x~ + xi + x~00 + x 6 x 7 + 3 = 0 

has seven variables. Notice that Diophantine equations can get fairly complicated, 
since one can multiply constants with variables, variables with variables, and raise 
variables to any (integral) power. Furthermore from the examples given earlier 
we know that Diophantine equations may or may not have solutions in integers. 
Is there a way that allows one to decide whether a given Diophantine equation 
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has ·integral solutions? Hilbert's Tenth Problem asks: Devise a process according 
to which, for a given Diophantine equation, "it can be determined by a finite 
number of operations whether the equation is solvable in integers" {cf. David Hilbert, 
Mathematical Problems, in: Mathematical Developments Arising from Hilbert 
Problems, American Mathematical Society, 1976). 

It is important to note that in retrospect the problem as stated did not permit 
an early solution. The reason is clear: it is a problem closely related to a subject in 
mathematical logic called recursion theory which was not developed until the 
1930's. In the year 1900 the only area in logic which was being closely studied was 
set theory, largely through the influence of Georg Cantor. It is then reasonable to 
assume that Hilbert kept his wording purposely vague since it was not clear then 
what constituted a 'procedure', although 'one knows it when one sees it'. But 
perhaps such a procedure does not exist? In order to fully appreciate this possibility 
one has to have a clear notion of what a 'procedure' is. That was however lacking in 
1900. 

In our present day terminology, we can state Hilbert's Tenth Problem in the 
following way: write a computer programme so that, given the coefficients of a 
Diophantine equation as input, _ the programme prints 1 as output if the equation 
has integral solutions, and prints 0 as output ifthe equation has no integral solutions. 
The time factor is completely irrelevant in our consideration. Thus the procedure 
required is one which is effective, in the sense that it can be carried out by a 
computing machine. 

The readers familiar with computer programming will find numerous examples 
to illustrate the notion of a procedure. There is, for a start, a programme which 
outputs 1 if the given input integer is a square, and outputs 0 otherwise. There is 
also a programme which outputs 1 if the given input integer is a prime number, 
and outputs 0 otherwise. Now it is true that one can write a programme so that, 
given the coefficients of a Diophantine equation as input, outputs 1 if the equation 
has integral solutions. This is done by testing the Diophantine equation successively 
wih integers. If and when a solution is found, output 1. The problem is that this 
programme works only when the given equation has a solution. If the equation has 
no solutions, the programme will instruct the computer to continue with its 
computations and never yields an output, i.e. the programme never halts (we 
imagine that there is an unlimited supply of computer time). 

Let us summarise what we have obtained thus far. There are programmes which 
accept integers as inputs. These programmes contain instructions according to which 
the computer will do its computations. Let us order these programmes as Programme 
No.1 {pd, Programme No.2 (P2 ), ••• , Programme No. n {Pn), ... Dependingon 
the instructions given by P n on input integer m, the computer may do one of the 
following: (a) It outputs 1; (b) it outputs 0; {c) it does not give an output. Let us 
call the programme P n perfect if on any given input either {a) or {b) occurs. For 
each n, let Cn be all the integers m which when given as inputs for P n, outputs 1. 
Now if P n is perfect, it is possible to decide in finite amount of time whether any 
m is in Cn, namely make m the input and run the programme P n. If the output is 
1, then m is in Cn. If the output is 0, then m is not in Cn. We can then say that the 
programme P n gives a procedure for deciding whether a given number is in Cn. Now 
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it is possible that for a given n, p n is not perfect but en is equal to ck for some k 
where Pk is perfect, (hence n :f k). This may happen for example when both P n and 
Pk test the divisibility of numbers by 2 with the following instructions: 

P n: If input is 2, give no output. 
Otherwise, see if input is even. 
If yes, output 1; otherwise output 0. 

Pk: If input is 2, give output 0. 
Otherwise, see if input is even. 
If yes, output 1; otherwise output 0. 

Notice that Pk is perfect but P n is not. Both of them, however, do virtually the 
same thing. In fact Cn = Ck. 

Let us call Cn decidable if it is equal to a Ck where Pk is perfect. We now ask 
the fundamental question: Is every Cn decidable? The answer is a resounding no. Let 
us write a programme P which does exactly the following things: Given input n, 
output 1 when n is in Cn. Then P = Pk for some k. We claim that Ck is not decidable. 
For suppose that it is. Then Ck = C

5 
for somes such that P5 is perfect. Introduce a 

new programme Pi such that for a given input r, Pi outputs 1 if P5 outputs 0, and Pi 
outputs 0 if P5 outputs 1. Is j in Ci? If j is in Ci, then by the instructions given for 
Pk, we know j is in Ck. And therefore, since Ck = C5 , j .is in C5 • But then j is not in 
cj. Conversely, if j is not in Cj, then j is not in en I and so j is not in Cs. But then j 
is in Ci. Hence either way we get a contradiction. We conclude that Ck is not 
decidable. In other words, there is a set Ck of integers for which no procedure exists 
to decide whether a given integer belongs to the set. Furthermore, this set Ck has the 
property that programme Pk yields output 1 on each input integer m in Ck. 

But what do all of these have to do with Hilbert's Tenth Problem? Simply 
this: Firstly, given a Diophantine equation (of one variable say), one can associate 
with it a programme P n so that Cn is precisely the set of integral solutions of the 
equation (this P n may say: given m, if m is a solution of the equation, output 1. 
Otherwise output nothing). Note that it is not necessary to restrict one's attention 
to Diophantine equations of one variable only. Programmes can be written to accom
modate Diophantine equations of several variables. And secondly, and this is the 
most significant point in our discussion, every Cn is the set of solutions of some 
Diophantine equation. 

The answer to the Hilbert problem is now clear: since each Cn is the solution 
set of some Diophantine equation, we know that there is a procedure to decide if 
a given Diophantine equation has integral solutions if, and only if, there is a pro
cedure to decide if a given number m belongs to a given set Cn. But we already know 
that there is a Ck which is undecidable. It follows that Hilbert's Tenth Problem is 
undecidable, i.e. no such decision procedure exists. 

The solution to the Tenth Problem was found in 1970 by the Russian mathe
matician Matiasevic, building on the earlier results of M. Davis, H. Putnam and 
J. Robinson of the United States. It is exciting to note that the solution was based 
on the pioneering work of Godel, Turing, Church and Kleene in the 1930's in the 
field of recursion theory, a subject which laid the foundation for modern day 
computer science. One could only marvel at Hilbert's penetrating insight in antici-

41 



pating thirty years ahead of time the advent of a new branch of mathematics from 
which the solution to his Tenth Problem emerged seventy years after it was stated. 

Of course the story of the Tenth Problem does not end here. It is known that 
there is a Diophantine equation with degree four where the solution set is un
decidable. There is on the other hand a decision procedure for equations of degree 
two (work of C. L. Siegel of West Germany in 1972). Whether or not a decision 
procedure exists for degree three is unknown. 

As for the number of variables in a Diophantine equation, it is known that no 
decision procedure exists for testing the solvability of equations with 13 variables. 
It is not difficult to come up with an algorithm to test equations with one unknown. 
For two variables, a decision method has been obtained by A. Baker of England and 
others for a wide class of Diophantine equations. Again nothing is known about 
three variables. 

Finally, one of the interesting offshoots of the solution of Hilbert's Tenth 
Problem is the discovery that many sets of numbers are found to have Diophantine 
character. For example, there is a Diophantine equation whose set of solutions in 
positive integers is precisely the set of prime numbers. Before the proof it was 
thought highly unlikely that this was true, and this feeling had often been used as 
evidence against the correctness of the approach taken then to prove the unsolv
ability of Hilbert's Tenth Problem. 
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