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Would you like to solve the following set (A) of four equations in the four 
unknowns x, y, z and u by reducing them to an equation of one variable in u? 

(A) 

In 1303, Zhu Shijje * {It ~ showed in his book Siyuan yujian IZQiC.:E'~ (Jade 
mirror of the four unknowns) [ 1], [2], [3] a method of eliminating the three 
unknowns x, y and z and reducing the equations to the following single equation 
in u, 

4u 2 - 7u - 686 = 0. 

In so doing, he established the lead by the Chinese for over 450 years in the 
elimination theory of polynomial equations of several variables. 

In Europe, it was Etienne Bezout [ 4] who initiated the study of solving a 
pair of polynomial equations in two unknowns, f(x, y) = 0 and g(x, y) = 0, of 
degree higher than one. In 1764, he presented a paper, where he showed his method 
of eliminating one unknown from the two equations by multiplying f(x, y) and 
g(x, y) by suitable polynomials F(x) and G(x) respectively, in order to obtain an 
equation in one unknown of the form 

R(y) = F(x)f(x,y) + G(x)g(x,y) = 0. 

When the above set (A) of four equations was reduced to an equation in one 
unknown, the problem could then pe solved as the mathematicians in thirteenth 
century China were familiar with a method of finding a positive root of a poly
nomial equation of any degree in one variable [5]. In contrast to this, it was not 
till the first half of the sixteenth century that mathematicians in the West such as 
Scipione dal Ferro, Niccolo Fontana (also known as Tartaglia) and Jerome Cardan 
made a breakthrough in the solution of cubic equations [6] . The method used by 
the Chinese to find a positive solution to a numerical equation of higher degree has 
been confirmed by historians of mathematics to be similar to the method used by 
W. G. Horner in 1819 [7], [8] . 

In the opening pages of the Siyuan yujian,. Zhu Shijie gave four problems 
showing how equations were set up, and in the case of equations of more than one 
variable, he displayed brief methods of how they could be reduced to an equation 
in one unknown. Computations were done with counting rods on a counting board. 
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The digits one to nine were represented by counting rods either in the from 

or 

II Ill 111111111 T1TTIT 1llT 
j_l_ _L _L 

The form of representation depended on the place-value of each digit. For instance, 

48 was represented by TTf and 25367 by II Ill _j_ lT. A rod placed 

diagonally across the last non-zero digit would indicate that the number was 
negative. 

In the first example of Zhu's book, the derived polynomial equation is of the 
form 

and this is represented in the text as follows: 

0 

lflTif 
.nr~ 

1f[ 
I 

which means 

-3888 tai 

0 

729 

-81 

-9 

The character tai *. indicates the row where the constant term is placed. The 
coefficients of the increasing positive powers of x are placed in the successive rows 
below, while the coefficients of the negative powers are put in the rows above. The 
counting board notation does not distinguish between a polynomial f(x) and its 
corresponding equation f(x) = 0. Whichever is meant, has to be ascertained from 
the context. 

For an expression in two unknowns, their coefficients are displayed on the 
counting board in a two-dimensional array as follows: 

1/x 2 

y2 /x y/x 1/x 
y3 y2 y tai 1/y 1/y2 

xy2 xy X x/y 
x2 y2 x2y xz x2/y 

x3y x3 
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Zhu displayed five such representations to explain his second problem. They 
are 

-2 0 
-1 2 

0 2 

0 0 

tai 
8 

4 

(iii) 

(i) 

tai 
0 

2 

(iv) 

tai 2 0 tai 
0 -1 2 0 

0 0 0 0 

0 0 

(ii) 

-8 
-2 

(v) 

In this problem, it is required to solve a set of two equations in the form 

(- x- 2)y 2 + (2x2 + 2x)y + x 3 = 0 

represented by (i) and 

(- x + 2)y2 + 2xy + x 3 0 

represented by (ii). 

These two equations are reduced to an equation in one unknown x 2 
- 2x - 8 = 0 

represented by (v), through the subtraction of (iii) from (iv) which in algebraic 
notations are 

4x 2 + 8x (iii) 
and x 3 + 2x 2 (iv). 

The procedure given by Zhu is so brief that there are a number of inter
pretations to derive (iii) and (iv). One of the processes is given below. The algebraic 
equivalence is written on the right. 

Step 1. Subtract the corresponding terms of (i) from those of (ii) to obtain 

4 

0 

0 

0 

0 

-2 
(vi) 

tai 
0 

0 

Step 2. Reduce (vi) by one column and divide by 2. 

2 tai 
0 0 2y - x 2 = 0 

0 -1 
(vii) 
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Step 3. Increase (vii) by one row. 

0 tai 
2 0 

0 0 2xy- x 3 0 

0 -1 

(viii) 

Step 4. Add the corresponding terms of (i) and (viii) to give 

-2 
-1 

0 

0 

4 

2 

(ix) 

tai 
0 

0 

Step 5. Reduce (ix) by one column to give 

-2 tai 
-1 4 

0 2 
(x) 

(-x-2)y 2 + (2x 2 + 4x)y 

(-x-2)y + 2x 2 + 4x 0 

0 

Step 6. Cross-multiply the first column of (vii) with the second column of (x) 
to give (iii), and the second column of (vii) with the first column of (x) 
to give (iv). 

2 tai tai 
0 X 4 8 2(2x2 + 4x) = 4x2 + 8x 

0 2 4 

(iii) 

-2 tai tai 
-1 X 0 = 0 

0 -1 .2 (-x-2)(-x2 ) = x 3 + 2x2 

1 

(iv) 
Step 1. Subtract the corresponding terms of (iii) from those of (iv) and reduce the 

result by one row to obtain (v). 

Analysing the above method which is computed on a counting board, we can 
write down the procedure in general terms as follows: 

In the given arrays of numbers, the first column from the right represents a poly
nomial f 0 (x), the second and third columns represent polynomials f 1 (x)y and 
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f2 (x)y2 respectively, and so on. Thus the above arrays (i) and (ii) represent 
equations of the form 

f2 (x)y2 + f 1 (x)y + f 0 (x) = 0 
and 92 (x)y2 + gl (x)y + go (x) = 0. 

From these two equations, the terms in y2 are eliminated to obtain 

P1 (x)y + Po (x) = 0, see (vii). 

Another equation of similar form is obtained when this equation is applied to one 
of the above two equations. We have 

q1 (x)y + q0 (x) = 0, see (x). 

In order to eliminate y from the last two equations, there is a cross-multiplication 
of the columns in arrays (vii) and (x), or in other words, 

P1 (x)qo(x) - Po(x)ql (x) = 0 

This equation is represented by (v). 

We have so far explained polynomials in two unknowns. As the number of 
unknowns in the polynomials increases so does the intricacy in the process of 
elimination. The representation of the coefficients of three unknowns on a counting 
board is shown below. Note that now the coefficients of terms like xyz have to be 
superimposed. 

y3 y2 y tai z z2 z3 

xy2 xy X xz xz2 

xyz 
x2 y2 x2y x2 x 2z x2 z2 

x3 

For a polynomial expression involving four unknowns, the whole space of the 
counting board is occupied as shown b.elow. 

u3y3 u3 y2 u3y u3 u3z u3z2 u3 z3 

u2 y3 u2 y2 u2 Y u2 u2z u2 z2 u2 z3 

uy3 uy2 uy u uz uz2 uz3 

yz 
y3 y2 y tai z z2 z3 

xu 

xy3 xy2 xy X xz xz2 xz3 

x2y3 x2y2 x2y x2 x 2z x2 z2 x2 z3 

x3y3 x3y2 x3y x3 x 3z x3 z2 x3z3 
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As an illustration of how this representation is used, we give below a 
translation of Zhu's fourth problem. This problem involves four" equations in four 
unknowns which in algebraic notations are equivalent to the set (A) of four 
equations in the first paragraph of this article. 

Zhu's fourth problem states 

"The product of the five differences and altitude [of a right-angled triangle] equals 
the sum of the square of the hypotenuse and the product of the base and hypo
tenuse. It is also given that the quotient of the five sums and the base equals the 
square of the altitude minus the difference of the hypotenuse and base. Find the 
huangfang }J(}j plus the sum of the base, altitude and hypotenuse. 

Answer: 14 bu 7]7 ". 

If we take x = base, y = altitude and z = hypotenuse, then the five differences 
are y - x, z - x, z - y, z - (y- x) and (x + y)- z. The five sums are x + y, y + z, 
z + x, z + (x - y) and (x + y) + z. The huangfang is a technical term for x + y- z. 
The two equations of the problem are 

fy- X+ Z- X+ Z- Y + Z- (y- X)+ X+ y- Z } y = z2 + XZ 
and ( x + y + y + z + z + x + z + x- y + x + y + z)/x = y 2 - (z- x), 

and it is required to find x + y - z + x + y + z which we represent by u. These 
equations are solved together with the equation derived from the right-angled 
triangle, namely 

In showing the working of the problem, Zhu gave the following arrays to show 
their representations of polynomials on a counting board. The algebraic inter
pretations [9] are written besides them. 

-2 tai 1 First equation 

0 0 -2y +X+ Z = 0. 

0 4 tai 4 Second equation 

-1 0 2 1 -xy2 + 4y- x2 + 2x + (x + 4)z = 0 

0 0 -1 0 

1 0 tai 0 -~ From the right-angled triangle 

0 0 0 0 0 y2 + x2 _ 2 2 = 0. 

0 0 0 0 

0 -1 0 To find 

2 tai 0 u = 2y + 2x. 

0 2 0 
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2 -8 

0 -1 

0 0 

-7 tai 

0 2 

0 294 

8 3 

0 -4 

0 

0 

16 

-2058 

-21 

28 

-686 

-7 

4 

28 tai 
6 -2 

0 -1 

An elimination process reduces the above 
equations to the next two equations after 
x and u are interchanged 
2y 3 + (-x-8)y2 + (6x + 28)y- x 2 

- 2x = 0 

-7y + 2x = 0. 

The next step is to reduce the arrays to two
column ones. 

8xy- 4x 2 + 3x + 294 = 0. 

A process of cross-multiplication produces 
the inner column 

and the outer column 

28x2 
- 21x- 2058 

from which the quadratic equation 

4x 2 
- 7x- 686 = 0 

is obtained. 

Zhu did not set problems involving polynomials of more than four variables 
for the obvious reason that the space on a counting board was limited. To solve 
such problems he would have to construct a three-dimensional board! Besides the 
four problems at the beginning of the book, the Siyuan yujian has 288 problems, 
of which 36 are connected with two equations in two unknowns, 13 are involved 
with three equations in three unknowns and 7 with four equations in four un
knowns. 
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