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It is my pleasure to give a talk at this ceremony, and I like to begin with a 
remark on the nature of understanding something. You know the equality (-a) x 
(-b) = ab. Just before I learned this equality, my teacher explained to me negative 
numbers in comparison with owing money and borrowing money, and the 
explanation was understandable. But, coming to multiplication, I was amazed. 
"What is -1 times borrowing money?" The teacher said, "If we multiply -1 to 
numbers, then positive numbers turn to negative numbers. Therefore negative 
numbers should turn to positive numbers." I was not convinced by this explanation. 
Later, I noticed that (a-b) (c-d) = ac + bd - ad - be, at least in the case a> band 
c > d. Then I felt that I understood the equality (-a) x (-b) = ab. As another 
example, when I learned the notion of vectors, though I could follow calculation 
of vectors, I felt that vectors are something out of my understanding. I could not 
see the meaning of equality or calculation of vectors. At that time, I could explain 
the notion of vectors by a sentence. I knew about vectors just as a knowledge, 
but I could not understand the notion. Later, faced with several applications of 
vectors, I began to feel that I understood vectors. 

I suppose that many of you have some experience like this. Even if you once 
felt that you understood something, you may feel later that you did not really 
understand it, because your understanding has become deeper. In any case, in going 
ahead, it is important to bring you to a situation in which you feel that you under
stand the notion, theorem, formula, etc. 

When you come to a new notion, etc., if you have enough understanding about 
the circumstances, then you can understand it quite easily; otherwise, you will 
understand it after some exercises or after getting some information connected with 
it. This is one reason why solving exercises is important in studying mathematics. 
But, it is also important to try to understand a mathematical subject from various 
sides. 

What I like to speak about next is the question of who could be a mathemati
cian. There are many people who believe that mathematicians are skilled in 
calculation of numbers. This belief is wrong. If an engineer designing an air plane 
makes an error, then there may be some fatal accidents. In general, engineers should 
have a good ability in calculation. Errors made by a mathematician could hardly 
be fatal. Furthermore, it is not often that a mathematician does complicated cal
culation of numbers. Thus ability in calculation of numbers is not important to 
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becoming a mathematician. To be a good mathematician the most important ability 
is the ability to think of problems from various sides. This includes the ability to 
create good new problems, to clarify the circumstances and to try to understand the 
circumstances deeper and deeper. 

Without any interest in a problem, we cannot continue to think about the 
problem. Therefore, for this kind of ability, you must promote your interest in 
mathematics. Thus, my answer to the question, "Who could be a mathematician?" 
is that anybody could be a mathematician if he promotes his interest in mathe
matics. For this purpose, I like to advise you to try the following practice: 

(I) When you see a mathematical problem somewhere and if you cannot see how 
to solve it, then write down the problem on a sheet of paper as simply as possible. 
Keep the sheet in your pocket. If you find some leisure time, take out the sheet, 
recall the problem and try to solve it. As soon as you can see how to solve it, stop 
going further into the problem, and pick up the next problem. If time is up and 
you do not see how to solve it, then keep the sheet in your pocket again. 

(II) Try to modify problems and theorems. Namely, think of what it would be if 
you change the assumptions. One easy example of this kind is: You know that if 
a circle and a line are given on a plane, then (i) they cross at two points or (ii) the 
line is tangent to the circle or (iii) they have no common point. You may think 
what it would be if you replace the circle by a polygon or by a sphere in space. 
For any theorem, there can be many such modifications; some useful, some non
sense. Anyway, you should try. 

Now I like to speak about imagination. In advancing mathematics, good 
imagination is very important. Mathematics is very abstract. To be abstract means 
to be more applicable in a sense. But, abstract notions are usually hard to under
stand and it is also hard to have motivation to develop them further. This is why 
imagination is important in advancing mathematics. Thus we can say that most of 
mathematics are products of imagination. I shall speak about three such examples. 

The first example is the notion of negative numbers. If one handles addition 
and subtraction only, then negative numbers are understood rather easily, though 
one needs some imagination. For multiplication, one needs good imagination; one 
has to think of an abstract notion of numbers. 

Though negative numbers were recognized in ancient China, as they appeared 
in an old Chinese book fL~~t,~i , in Europe, negative numbers were recognized 
as numbers only in the 16th century. 

The second is the notion of complex numbers. It was also in the 16th century 
that Cardano used square roots of negative numbers to compute roots of algebraic 
equations of degree three. It is believed that the one who found a method to solve • 
equations of degree three is Scipione del Ferro, who did not publish his solution. 
But, in those days, negative numbers were not recognized and therefore we may say 
that he found a method to find one solution of a certain type of equations of degree 
three. Cardano used not only negative numbers but also square roots of negative 
numbers. He applied a similar method to the general case to obtain three roots. 
Though you probably do not know the method of Cardano, I like to tell you the 
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fact that if all three roots are mutually distinct real numbers, then we have to use 
square roots of negative numbers in solving the equation. Cardano did not give a 
rigorous foundation of complex numbers. He used imaginary numbers just for 
convenience. The foundation was given much later, and in the view of modern 
mathematicians, the existence of complex numbers is real. The introduction of the 
notion of complex numbers was the good imagination of Cardano. 

I suppose that you have heard of non-Euclidean geometry. This is a geometry 
in which the usual axiom of parallel lines is denied. In that sense, there are two 
types of geometry. One type is such that if a line Q and a point p outside of Q are 
given, there are at least two lines going through p and parallel to Q. The other type 
is such that there is no line going through p and parallel to Q. In the old days, many 
people imagined that the axiom of parallel lines could be proved and they tried 
to prove it. At last, people noticed that we can have non-Euclidean geometry and 
found several models satisfying one of these axioms of plural existence or non
existence of parallel lines. At that time, the study was done merely from the logical 
view-point. But the existence of such a theory helped Einstein when he proposed 
relativity theory. The structure of our universe is still mysterious and is seemingly 
a non-Euclidean space. 

As I said before, there are plenty examples of products of good imagination. 
But I will not give more examples here. Instead, for your better understanding, I 
like to say something more about complex numbers and non-Euclidean geometry. 

Though you may know about the Gauss plane, let us review it. Consider a 
plane with coordinate system (x, y). The point (x, y) represents the complex 
number x + iy (i = y'=T). Addition is coordinatewise. Therefore complex numbers 
have the property of two-dimensional vectors. Furthermore, complex numbers 
admit multiplication. For multiplication, it is better to use another expression by 
absolute value and argument. Namely, take a complex number a on the Gauss plane 
with origin 0. The length of 0~ is the absolute value of a, usually denoted by I a I. 
The angle () between 01 and 0~ is the argument of a, usually denoted by Arg a. 
Then a is expressed by 

a = r(cos () + i ·sin()), 

with r = I a I and () = Arg a. Now, if (3 = s(cos Q + i-sin Q), where s = I (31, Q = Arg (3, 
then a(3 = rs(cos (() + Q) + i·sin (() + Q). Thus 

I a(3 I = I a I I (31, Arg (a(3) = Arg a+ Arg (3 (modulo 21T). 

So, for instance, to multiply a complex number of absolute value 1 means a rotation 
of the Gauss plane about 0. 

This kind of property of complex numbers is very often used in mathematics, 
and I like to add one rather odd application of the Gauss plane which may interest 
you. 

Take two points A, B (A =f B) on a plane. For a positive number r, the set Cr = 
{ P I AP/BP = r} forms a circle known under the name of Appollonius if r =f 1; if 
r = 1, then Cr is a line. Now there is a theorem: 
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If D is a circle going through both A and B, then Cr and D intersect ortho
gonally. 

This theorem can be proved easily by using the mapping f of the Gauss plane 
G without the origin, defined by f(z) = z- 1

. This mapping has the following pro
perties: 

(1) lines going through 0!. lines going through 0. 

(I) (2) circles not going through 0 L circles not going through 0. 

(3) lines not going through 0 L circles not going through 0. 

(II) If e and ~ approach a and if the limit of the angle between w. and ~a is 8, 
then f(e) and f(~) approach f(a) and the limit of the angle between f(e)f(a) and 
f(~)f(a) is equal to e. This means that two curves intersect at a at an angle () 
if and only if the images of these curves intersect at a- 1 at an angle(). 

These properties are easily confirmed and I shall leave the details to you. 

Let us apply this to our theorem. We may let A = 0, B = 1. Apply f to D : 
f(D) is a line going through 1. For r f= 1, Cr is a circle symmetric with respect to the 
real line. Therefore f(Crl is a circle symmetric with respect to the real line. The real 
points of Cr are r/( 1 + r) and r/(r- 1 ). Therefore f(Crl is the circle having ( 1 + r)/r 
and (r - 1 )/r as ends of a diameter. Hence f(Crl is a circle with center at 1. There
fore f(D) and f(Crl intersect orthogonally. The case r = 1 is clear. Thus by (II) the 
theorem is proved. 

In ending this lecture, I like to introduce the projective plane as an easy model 
of non-Euclidean geometry. 

Roughly speaking, we first consider the usual plane, say F, and we add so
called points at infinity so that two lines on F meet at infinity if and only if they 
are parallel on F. This can be realized by using coordinate system (x, y, z) as 
follows: 

We consider the set H = { (x, y, z) I (x, y, z) f= (0, 0, 0)} . Two coordinates 
(a, b, c) and (a', b', c') express the same point if and only if a:b:c = a':b':c'. If we 
associate (x, y, 1 ), or equivalently (xt, yt, t), t f= 0, to the point (x, y) on F, then 
we have a good embedding of F in the projective plane and those having coordinates 
of type (a, b, 0) are points at infinity. Lines are defined to be the set of points 
satisfying a linear equation of the type aX+ bY+ cZ = 0, (a, b, c) f= (0, 0, 0). A line 
on F is given by aX+ bY + c = 0. This is embedded in the line aX + bY + cZ = 0, 
which has (-b, a, 0) as a unique extra point, the point at infinity which is to be 
added to the line aX + bY + c = 0. The projective plane has only one line, Z = 0, 
outside of F. Therefore any two lines in the projective plane have a common point. • 

In the projective plane, we can observe some interesting phenomena. For 
instance, circles, ellipses, parabolas, and hyperbolas are transformed by linear 
transformations into each other. This matches with the fact that they are conic 
sections. 
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Another interesting phenomenon is duality. Consider the correspondence: 

point (a, b, c) ~ line aX+ bY+ cZ = 0. 

A point (a', b', c') lies on the line aX + bY + cZ = 0 ~ aa' + bb' + cc' = 0 ~the 
line a'X + b'Y + c'Z = 0 goes through the point (a, b, c). 

Therefore, if we have a statement on lines and points with respect to "lying 
on" and "going through", then the new statement obtained by interchanging 
"point" with "line" and "lying on" with "going through" is equivalent to the 
original statement. 

I shall give you one example by proving the following theorem: 

Assume that a given finite set M of points p 1 , ••• , Pn in space has the 
property that if a line goes through two of these Pi, then it goes through at least 
three of these Pi· Then p 1 , ••• , Pn are collinear. 

Proof. It is sufficient to prove the case when these Pi are on a plane. There
fore it suffices to prove this on a projective plane. Then we have only to prove the 
dual: 

( *) Assume that a given finite set M* of lines £1 , ... , Qn has the property 
that if a point p is common to two of these Qi, then there are at least three of 
these Qi which go through p. Then all the Qi go through one common point. 

We take a line Q* not going through any of the intersections of these 
lines. Then the complement of Q* has the structure of the usual plane. Therefore 
it sufficies to prove ( *) in F under additional assumption that each pair Qi; Qi has 
a common point. 

Assume that there are more than one intersection. Take £1 . There is an 
intersection outside of Q1 . Take the nearest intersection outside of Q1 • Let it be p. 
Through p, there are at least three of the Qi, say £2 , £3 , Q4 • Set qi = Qi n £1 , (i = 
2, 3, 4), and we may assume that q2 is in between q3 and q4 • Then through q2 , 

there must be one Qi other than Q1 and £2 • Let it be Q5 • Then Q5 has an intersection 
with either Q3 or £4 , nearer to £1 than p. This is a contradiction, and the theorem 
is proved. 
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