
BASIC ARITHMETIC ON THE MICRO* 

Peng Tsu Ann 
National University of Singapore 

We start off by looking at the way numbers are represented by 0 and 1 in the 
binary system. We are concerned here only with the number of binary digits 
required to represent a positive integer. In the decimal system we use the digits 
0, 1, 2, ... , 9 to make up a positive integer of any magnitude. In the binary system 
we use only the digits 0, 1. The number of digits needed in the binary representation 
of an integer is greater than that in the decimal system. The question is how much 
greater. We know that the numbers 0 and 1 can be represented using one digit, i.e. 

0 or [2J 
The numbers 0, 1, 2, 3 can be represented using two digits, i.e. 

I o I o I [IT!] rn 
0 1 3 

The numbers 0, 1, 2, ... , 7 can be represented by using three digits, i.e. 

000 

0 

001 010 

2 

011 

3 

100 

4 

101 

5 

110 

6 

111 

7 

The numbers 0, 1, 2, ... , 15 can be represented by using four digits. For example, 

1011 1111 

11 15 

If we want to represent the numbers 0, 1, 2, ... , 9, how many binary digits do we 
need? This number x can be obtained from the equation 

T = 10. 

A simple calculation will give x % 3.3. So we need a little more than 3 digits to 
represent the 10 numbers 0, 1, 2, ... , 9. 

Now let us go over to the computer. Most microcomputers use 2 bytes (1 
byte = 8 bits or 8 binary digits) to represent integers. The number of integers that 
can be represented is therefore 2 16 = 65536. One half of these numbers are negative 
and the other half non-negative. This means the range of integers that can be used in 
integer calculations is restricted to -32768 to 32767. 

*Text of the Presidential Address delivered to the Singapore Mathematical Society on 25 March 1983. 



In real number computations a typical microcomputer (not the Apple) uses 
4 bytes (= 32 digits) to represent a number, but not all the bits are used to represent 
the "significant" part of the number. One byte is used to represent the exponent 
e.g. a real number (single-precision) of the form 

2.34567 X 104 

will appear as 

2.34567E + 4 or 0.234567E + 5 

in most single-precision representation. How many digits can we get? 

Answer: approximately ;_~ % 7. But usually only 6 digits are displayed. 

Thus we see that using integers only a number must not exceed 32767 and 
using real numbers it must not exceed 999999 (actually you can exceed this but to 
be on the safe (accurate) side, use this as your limit.) What do we do if we want to 
multiply two six-digit numbers (such as 878432 and 610472) and to get the exact 
answer? If you have an Apple or some other inexpensive microcomputer, there 
isn't much you can do if you leave everything to the machin~ (i.e. if you want just 
to type in the numbers and leave the machine to work it out). If you have a more 
powerful microcomputer you will get double-precision arithmetic which uses 8 

bytes and gives you 16-digit accuracy. Why 16 digits? Answer: 7 + i.~ % 17. 

(If you want a better explanation consult people in the Computer Science Depart
ment or the Electrical Engineering Department. I am out of my depth here.) ·But 
then what do you do when you want the exact answer when two 1 0-digit integers 
are multiplied? Here is where we actually begin our talk. 

We shall begin with addition. Since even with the double precision capacity 
the microcomputer cannot handle integers with more than 16 digits, how do we 
enter integers which have 20 digits? The short answer is "Use strings". Here I must 
assume that the word ''string" is meaningful to you. 

We shall now try to explain the operations of addition, subtraction, multipli
cation and division. 

Addition 

To add two integers A and B (say each of 20 digits) we write them as 

A(20)A(19) 

B(20)B(19) 

A(3)A(2)A( 1) I 

B(3)B(2)B(1), 

where A(i) is the ith digit of A counting from the right, etc. The sum, C, has 20 or 
21 digits and we write it as 

C(21 )C(20)C( 19) C(3)C(2)C( 1 ). 

2 



To get C(i) fori= 1, ... , 20 we proceed as we do by hand: 

If A(i) + B(i) < 10, then put C(i) = A(i) + B(i); 
if A(i) + B(i);;;:. 10, then put C(i) = A(i) + B(i)- 10 
and replace A(i + 1) by A(i + 1) + 1. 
Put C(21) = A(21 ). 

In BASIC this can be written as 

Subtraction 

10 FOR I = 1 TO 20 
20 C(l) = A(l) + B(l) 
30 IFC(I)>9THENC(I)=C(I) -10:A(I+1) = A(l+1)+1 
40 NEXT I 

We use the same notation as for addition. We assume that A ;;;:. B. To get 
C(i) fori= 1, ... , 19 we also proceed as we do by hand: 

If A(i);;;:. B(i), then put C(i) = A(i)- B(i); 
if A(i) < B(i), then put C(i) = 10 + A(i)- B(i) 
and replace A(i + 1) byA(i + 1)- 1. 
Put C(20). = A(20) - B(20). 

Multiplication 

We illustrate the method by an example. Suppose that we want to find the 
product of 234 and 56. Let us first perform the multiplication by hand: 

234 
X 56 

1404 
1170 

13104 

To be able to do this we need to know our 9 x 9 table. Suppose that we know our 
9 x 99 table we can do the above multiplication as follows: 

234 
X 56 

224 
168 

112 

13104 

The second method seems more complicated than the first and requires more steps, 
but it is easier and faster to implement on a computer. Let us see how this can be 
carried out step by step on a computer. 

3 



Let A = A(3)A(2)A( 1) and let B = 56. The product A(3)A(2)A( 1) x B has 
5 digits; let us call them A'(5)A'(4)A'(3)A'(2)A'( 1 ). 

To get A'(1): 

A( 1) X B = 4 X 56 224 

C(1) = INT(224/10) 22 

A' ( 1) = A( 1) X B- 10 X C( 1) = 4 

The interger C( 1) is to be carried forward. 

To get A'(2): 

A(2) X B = 3 X 56 = 168 

A(2) x B + C ( 1) = 168 + 22 190 

C(2) = INT(190/10) 19 

A'(2) = 190- 10 X C(2) 0 

To get A'(3): 

A ( 3) X B = 2 X 56 = 112 

A(3) X B + C(2) = 112 + 19 131 

C(3) = INT(131/10) 13 

A'(3) = 131- 10 X C(3) 

To get A'(4), A'(5): 

If we put A(4) = 0, A(5) = 0 and go through the process we get 

A'(4) = 3 

A'(5) = 1. 

In fact, there is no need to find A'(4), A'(5) separately because A'(5)A'(4) = C(3). 

In BASIC we can program the above steps as follows 

10 FOR I = 1 TO 3 

20 A( I) = A( I)* B + C 

30 C = INT(A(I)/10) 

40 A(l) = A(l) - 10 * c 
50 NEXT I 

60 A(4) =C. 

This shows why the second method of multiplying two integers is easier to 
implement on a computer. But there is one problem. What happens if B is very 
large? Answer: use the first method. 

4 



Division 

As for multiplication we use an example to illustrate the method. What we 
actually do is long division on a computer. Let us see how we divide 692653 by 
345 by hand: 

2007 

345) 692653 
690 

2653 
2415 

238 

Let us analyse our steps. Step 1: we take the first 3 digits of 692653 because the 
divisor has 3 digits. Step 2: we divide 692 by 345 to get the quotient 2 (this may 
not be easy and involves guesswork). Step 3: we do a multiplication and then a 
subtraction. Step 4: we go back to Step 1 to repeat the process. 

It appears that there is no problem here, but if we look a bit closer we see that 
what we have actually done was not quite straightforward. In Step 4, we repeated 
Step 1 to get the quotient. Since 265 < 345, the quotient is 0. But if we had put in 
"0" instead of "00" in. the quotient we would have got a wrong answer. So we 
need to be careful here. To carry out the above division on .a computer we have to 
tell the computer exactly what to do and not just "you know what I mean" or "it is 
clear". 

There is a more straightforward way of doing division. The method can be 
easily programmed using BASIC. The programming is left to the reader. We use 
the same examp I e. 

002007 

345) 692653 
0 

69 
0 

692 
690 

26 
0 

265 
0 

2653 
2415 

238 

The method is clear. More computations are needed and so in some cases it is slower 
than the first method. 

5 



Using the built-in double precision arithmetic capacity of some micros we can 
divide a 16-digit integer by a 15 digit integer rather quickly. With a bit of pro
gramming and care we can. divide an integer of any number of digits by an integer 
of at most 15 digits. What if the divisor has more than 15 digits? The principle is 
the same but the implementation requires a lot more work. In fact, it can be a 
challenge to produce an efficient program for division on a micro. I know because 
I have tried. 

We shall illustrate the techniques explained in this talk with some sample 
programs written in Microsoft BASIC. 

EXACT MULTIPLICATION 

10 REM EXACT MULTIPLICATION 
20 PRINT 
30 PRINT TAB (30) "EXACT MULTIPLICATION" 
40 PRINT: PRINT 
50 INPUT "FIRST INTEGER"; A$ 
60 INPUT "SECOND INTEGER"; B$ 
70 PRINT 
80 DEFINT A-D, 1-M 
90 DIM A(250), B(250), D(500) 

100 LA = LEN(A$) : LB = LEN(B$) : L = LA+ LB 
110 FOR J = 1 TO LA 
120 A(J) = VAL(MID$(A$LA-J+1,1)) 
130 NEXT J 
140 FOR J = 1 TO LB 
150 B(J) = VAL(MID$(B$, LB- J + 1, 1)) 
160 NEXT J 
170 FORI= 1TOLB 
180 FORJ = · 1TOLA+1 
190 H=J+I-1 
200 D(H) = D(H) + A(J) * B(l) + C 
210 C = INT(D(H)/10) 
220 D(H) = D(H)- 10 * C 
230 NEXT J 
240 NEXT I 
250 IFD(L)=OTHENL=L--1 
260 PRINT "THE PRODUCT IS" TAB(17); 
270 FORK = L TO 1 STEP -1 
280 PRINT MID$ (STR$(D(K)), 2); 
290 NEXT K 
300 PRINT: PRINT 
310 END 

6 



EXACT POWERS 

10 REM EXACT POWERS 
20 PRINT 
30 PRINT TAB(30) "EXACT POWERS" 
40 PRINT: PRINT 
50 DEFINT A-D, 1-N, P 
60 INPUT "ENTER INTEGER (BASE)", B$ 
70 INPUT "MAXIMUM EXPONENT"; N 
80 PRINT 
90 DIM A(500), B(lOO), D(500) 

100 PRINT "EXPONENT POWER OF" B$ 
110 PRINT 
120 PRINT 1 TAB(11) B$ 
130 LB = LEN(B$): LA= LB: L =LA+ LB 
140 FORJ = 1 TO LB 
150 B(J) = VAL(MID$(B$,LB-J+1,1)) 
160 A(J) = B(J) 
170 NEXTJ 
180 FORM=2TON 
190 FOR I = 1 TO LB 
200 FOR J = 1 TO LA+ 1 
210 H = I+ J- 1 
220 D(H) = D(H) + A(J) * B(l) + C 
230 C = INT(D(H)/10) 
240 D(H) = D(H)- 10 * C 
250 NEXT J 
260 NEXT I 
270 IF D(L) = 0 THEN L = L- 1 
280 FOR K = 1 TO L 
290 A(K) = D(K) 
300 D(K) = 0 
310 NEXT K 
320 PRINTMTAB(11); 
330 FORK= L TO 1 STEP-1 
340 PRINT MID$(STR$(A(K)), 2); 
350 NEXT K 
360 LA = L : L = LA + LB 
370 PRINT 
380 NEXT M 
390 PRINT 
400 END 

7 



EXACT DIVISION 

10 REM DIVISION BY DIVISOR OF NOT MORE THAN 15 DIGITS 

20 PRINT 

30 DEFDBL A-C, R : DEFINT J, L 

40 INPUT "ENTER POSITIVE INTEGER ",A$ 

50 INPUT "ENTER DIVISOR (NOT MORE THAN 15 DIGITS)", B$ 

60 PRINT 

70 LB = LEN(B$) : B =VAL (B$) 

80 A 1$ = LEFT$(A$, 16) : LA 1 = LEN(A 1$) 

90 A = VAL(A 1$) 

100 C = INT(A/B) 

110 R = A- C * B 

120 01$ = MID$(STR$(C), 2) : L01 = LEN(01$) 

130 J = J + 1 

140 IF J = 1 THEN 0$ = 01$ : GOTO 170 

150 02$ = STRING$(LA1-LR-L01, 48) 

160 0$ = 0$ + 02$ + Q 1$ 

170 R$ = MID$(STR$(R). 2) 

180 LR = LEN(R$) 

190 A$ = R$ + Ml D$(A$, 17) 

200 LA = LEN(A$) 

210 IF LA< LB OR (LA= LB AND A$< B$) THEN GOTO 230 

220 GOTO 80 

230 0$ = 0$ + STRING$(LA-LR, 48) 

240 WHILE LEFT$(A$, 1) = "0" 

250 A$ = MID$(A$, 2) 

260 WEND 

270 IF A$ = ""THEN A$= "0" 

280 PRINT "QUOTIENT="; 0$ 

290 PRINT 

300 PRINT "REMAINDER="; A$ 

310 PRINT 

320 END 

8 



THE FIBONACCI SEQUENCE 

10 REM THE FIBONACCI SEQUENCE 
20 PRINT TAB(30) "FIBONACCI SEQUENCE" 
30 DEFINT A-C, 1--N 
40 DIM A(250), B(250), C(251), D$(251) 
50 PRINT: PRINT 
60 INPUT "HOW MANY TERMS"; N 
70 PRINT 
80 PRINT "TERM" TAB{11) "NUMBER" 
90 PRINT 

1 00 A$ = "1" : B$ = "1 " 
110 PRINT 1 TAB(11) A$ 
120 PRINT 2 TAB(11) B$ 
130 FORM =3TO N 
140 PRINTMTAB(11); 
150 GOSUB 1000 
160 A$ = B$ : B$ = C$ 
170 PRINT C$ 
180 NEXT M 
190 PRINT 
200 END 

1000 REM ADDITION SUBROUTINE 
1010 LA= LEN(A$) : LB = LEN(B$) 
1020 FOR J = 1 TO LA 
1030 A(J) = VAL(MID$(A$, LA- J + 1, 1)) 
1040 NEXT J 
1050 FOR J = 1 TO LB 
1060 B(J) = VAL(MID$(B$, LB- J + 1, 1)) 
1070 NEXT 
1080 IF LA>= LB THEN L= LA ELSE L= LB 
1090 FOR I= 1 TO L 
1100 C(l) =A( I)+ B(l) 
1110 IFC(I)>9THENC(I)=C(I)-10:A(I+1)=A(I+1)+1 
1120 NEXT I 
1130 IFA(L+1)=1THENC(L+1)= 1:L=L+1 
1140 F 0 R K = 1 T 0 L 
1150 D$(K) = MID$(STR$(C(K)), 2) + D$(K- 1) 
1160 D$(K- 1) = "" 
1170 NEXT K 
1180 C$ = D$(L) 
1190 FOR K = 1 TO L 
1200 A(K) = 0: B(K) = 0: C(K) = 0 
1210 NEXT K 
1220 RETURN 

9 



BINOMIAL COEFFICIENTS 

10 REM BINOMIAL COEFFICIENTS 
20 PRINT 
30 PRINT TAB(30) "BINOMIAL COEFFICIENTS C(N, K)" 

PRINT: PRINT 40 
50 
60 
70 
80 
90 

100 
110 

120 

130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 

3000 
3010 
3020 
3030 
3040 
3050 
3060 
3070 
3080 
3090 
3100 
3110 
3120 
3130 

DEFINT 1-N, X-Z 
DEFDBL A-C, E-G, R 
DIM X(251 ), Z$(251) 
INPUT "POSITIVE INTEGER N"; N 
INPUT "POSITIVE INTEGER K"; K 
PRINT 
IF N < 0 OR K < 0 THEN PRINT "ENTER POSITIVE INTEGERS" : 
PRINT: GOTO 80 
IF N < K THEN PRINT "ENTER N, K WITH N GREATER OR EQUAL TO 
K: ":PRINT: GOTO 80 
E$ = "1" 
PRINT "C("MID$(STR$(N), 2)", II "0"") = 1" 
FORM= 1 TO K 
IF LEN(E$) < 15 THEN E = VAL(E$): GOTO 200 
X$ = E$: Y = N- M + 1 : GOSUB 3000 
A$ = Z$: B = M: GOSUB 4000 
E$ = Q$ : GOTO 220 
F = N - M + 1 : G = M : E = E * F/G 
E$ = Ml D$(STR$(E), 2) 
IF M > 9 THEN GOTO 250 
PRINT "C("MID$(STR$(N), 2) "," MID$(STR$(M), 2) 11

) = II E$ 
GOTO 260 
PRINT "C(" MID$(STR$(N), 2) "," MID$(STR$(M), 2) 11

) = II E$ 
NEXTM 
PRINT 
END 

: 

REM MULTIPLICATION SUBROUTINE 
LX= LEN (X$) 
FOR I= 1 TO LX 
X(l) = VAL(MID$(X$, LX- 1 + 1, 1)) 
NEXT I 
Z=O 
FOR J = 1 TO LX 
X(J) = X(J) * Y + Z 
Z = INT(X(J)/10) 
X(J) = X(J) -- 10 * Z 
NEXT J 
X(LX+1) = Z 
IF Z <> 0 THEN LX= LX+ 1 
FOR J = 1 TO LX 

10 



BINOMIAL COEFFICIENTS (CONTINUED) 

3140 Z$(J) = MID$(STR$(X(J)), 2) + Z$(J- 1) 
3150 Z$(J-1) = "" 
3160 NEXT J 
3170 Z$ = Z$(LX) 
3180 RETURN 
4000 REM DIVISION SUBROUTINE 
4010 J = 0 
4020 A 1$ = LEFT$(A$, 16) : LA 1 = LEN(A 1$) 
4030 A= VAL(A 1$) 
4040 C = INT(A/B) 
4050 R = A - C * B 
4060 01$ = MID$(STR$(C), 2) : L01 = LEN(01$) 
4070 J = J + 1 
4080 IF J = 1 THEN 0$ = 01$: GOTO 4110 
4090 02$ = STRING$(LA1-LR-L01, 48) 
4100 0$ = 0$ + 02$ + 01$ 
4110 R$=MID$(STR$(R),2) 
4120 LR = LEN(R$) 
4130 A$= R$ + MID$(A$, 17) 
4140 LA= LEN(A$) : B$ = MID$(STR$(B), 2) : LB = LEN(B$) 
4150 IF LA< LB OR (LA= LB AND A$< B$) THEN GOTO 4170 
4160 GOTO 4020 
4170 0$ = 0$ + STRING$(LA-LR, 48) 
4180 RETURN 

The above programs should run without change on any microcomputer which 
supports Microsoft BASIC (also known as MBASIC or BASIC-80). On machines 
that run their own versions of Microsoft BASIC some modifications may be 
necessary (e.g. in the use of the string function MID$). The dimension statements 
in the programs can be changed to save memor.y or to increase accuracy. All the 
programs can be compiled to increase the speed of computation. For the mathe
matically inclined it is fun to experiment with large numbers on a microcomputer; 
it is often more satisfying than playing games and certainly more interesting than 
doing accounts payable. 

11 




