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When one looks at mathematical phenomena or theories from various points 
of view instead of from only one angle, one usually gets some unexpected harvests 
and discoveries. There are so many such examples in the history of mathematics. 

( 1) Jacobi and others consciously applied the theory of complex analytic func
tions, especially the theory of elliptic functions, to number theory. 

(2) The proof of Dirichlet's theorem on the existence of an infinite number of 
primes in the arithmetic progression m, m + k, m + 2k, ... , where m, k are 
coprime positive integers, uses very heavily the properties of the L-function 

L(s, X) = 

where X is a character. 

(3) The Dedekind 17-function has recently been taken up by Macdonald, and the 
expansion formula for the powers of 17 is reduced to a classical Weyl 
denominator formula through the use of infinite-dimensional Lie algebras, 
in particular the Kac-Moody Lie algebras. 

Let us now take up some concrete problems and look at their discrete and 
continuous versions. 

Proposition 1 (via Louis Chen) 

If a smooth function f on [0, 1] satisfies f(O) = f( 1) = 0, f~ f(x)dx = 1, then 
there exists ~ E (0, 1) such that ! f'W I> 4. The value 4 is best possible. 

The discrete version of this proposition is as follows. 

Proposition 2 

inf 
X 1 + ... + Xn = 1 

X 1 = Xn = 0 ( 
sup 

X · - X· 
1<;;;i<;;;n-1 I ' 1+1 1) = { klk~ 11' 

k2 I 

n = 2k, 

n = 2k + 1. 

*Text of a lecture organized by the Department of Mathematics, National University of Singapore, and the 
Singapore Mathematical Society on 10 February 1983. Notes taken by Y. K. Leong. 
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Proposition 3 (Wirtinger's Inequality) 

If f(x) is a function satisfying 

J 
21T 

0 
f(x)dx 0, 

theh 

J 21T s 21T 

0 
(f(x)) 2 dx ~ 

0 
(f'(x)) 2 dx. 

This inequality has a discrete version in the following form. 

Proposition 4 

If x 1 , ••• , Xn are n real numbers satisfying x 1 + ... + Xn = 0, then 

X 2 + . . . + X 2 ~ -=-:-:----1------,:--,......... 
1 n '""" 2(1 -cos 21T/n) 

n 
~ (Xi-Xi+1) 2, 

i = 1 

where Xn+ 1 = Xn. 

Games often give us a different way of looking at mathematics. The follow
ing games will illustrate such points of view. 

(I) N im. This game is played by 2 players with n piles of stones (usually 3 piles of 
stones). Given n piles of stones, denoted by (a 1 , ... , an) E (Z+)" = lL.+ x ... x 
lL.+, where Z+ denotes the set of non-negative integers. The first player takes any 
number of stones out of any pile but not from more than one pile. The same rule 
applies to the second player. Moves alternate between the players and there is no 
passing. The winner is the one who clears the board. 

There is a winning strategy for the second player in terms of the 2-adic (or 
binary) expansion of integers. The winning position ·or configuration for the second 
player is given by the following criterion. Denote the position of the game or board 
just before the second player's move by (b1, ... , bn) E ( Z + )". 

Let the 2-adic expansions of the bi be as follows: 

b1 = €(1) + €(1) .2 + €(1) .22 + €ll) .23 + 
Q 1 2 3 • • • I 

b2 €(2) + €(2) .2 + €(2) .22 + €(2) .23 + • • • I 

0 1 2 3 

where the €~) E { 0, 1 } . Then the position (b1, ... , bn) is ~ winning position 

for the second player if and only if E!1 l + E!2l + . . . + E!"l = 0 (mod 2) for 
I I I 

i = 0, 1, 2, .... 
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We give the following two concrete examples. 

Example 1 

The position (3, 17, x) is a winning position for the second player if and 
only if x = 18. 

To see this, write 

3 1 + 1.2, 

17 = 1 + 

• • • I 

where ei E { 0, 1 } , i = 0, 1 ... The criterion implies that e1 = e4 = 1 and all the 
other ei are 0, i.e. x = 2 + 16 = 18. 

Example 2 

For the starting position (37, 100, 200), what is the best move for the first 
player? 

First express in 2-adic expansion: 

37 = CD + 4 + 32, 

100 = 
200 = 

4 + 

®+ 
32 + 64, 

64 + 

In each column of the expansions, identify the unpaired term (which we call a 
"chonga", meaning "he who has no opponent" in Japanese). The winning strategy 
for the first player is to alter the number containing the largest chonga (or "kill 
the largest chonga") in such a way that the resulting numbers contain no chonga. 
The new number that arises after alteration represents the number of stones which 
the first player should remove from that pile. In this example, 200 contains the 
largest chonga (128). We alter this number (200) so that the resulting number is 
1 + 64. Thus the first player should remove 135 stones from the third pile: 

(37, 100, 200) ~ (37, 100, 65). 

(II) Wythoff's game. Played by 2 players. Given 2 piles of stones, denoted by 
(a, b) E Z + x Z +· The first player can take any number of stones out of any 
one pile or he can take the same number of stones out of the 2 piles. The same rule 
applies to the second player. Moves alternate between the players and there is no 
passing. The winner is the one who clears the board. 
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The starting position (a, b) which is a winning position for the second player 
is given in Table 1, where "o" denotes a winning position and only the positions 
(a, b), a.;;;;; b, are shown (there is symmetry about the diagonal line). 

a 
I:) 0 1 2 3 4 5 6 7 8 ~ 10 1112 13 14 15 16 17 18 19 

0 0 
1 1'\. 
2 0 ~ 
3 " 4 :"\ 
5 0 :"\ 
6 I"-
7 0 "' 8 " 9 " 10 0 

""' 11 !"-. 
12 

"" 13 .0 I'. 
14 "' 15 0 I" 
16 " 17 "' 18 0 "' 19 I" 
20 I"-
21 

"" 22 ' 23 0 ' 24 "' 25 " 26 0 " 27 " 28 0 ' 29 " 30 "'-31 0 " 
Table 1 

From this one can observe the following phenomenon among the sequence of 
winning positions tan, bn), an .;;;;; bn. In Table 2, the boxed numbers denote the 
respective differences between consecutive an and bn. If one groups these 
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No. 

0 0 0 

0~ 
1 

1 1 2 
2 @] 

2 3 ,.....- 5 

~ 
1 

3 4 7 
2 

4 6 '--- 10 - -
2 3 

\ 5 8 13 
1 2 

6 9 15 
2 3 

7 11 
...___ 

18 -
,.....- -
1 2 

8 12 20 
2 3 

9 14 23 
2 3 

10 16 26 
1 2 

11 17 28 
2 3 

J2 19 - 31 -
- -
2 3 

13 21 34 
1 2 

14 22 36 
2 3 

15 24 39 
1 2 

16 25 41 
2 3 

17 27 44 
2 3 

18 29 47 
1 2 

19 30 49 
2 3 

20 32 '--- 52 -
1 

21 33 54 

Table 2 
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differences into blocks as shown in Table 2, one realises that each block is obtained 
as a composite of the preceding two blocks in their respective order. One may say 
that the block formation obeys the "Fibonacci law". Recall that the sequence of 
Fibonacci numbers, F 1 , F 2 , F 3 , •.. , is defined by 

F 1 = F 2 = 1, F n = F n _ 1 + F n _ ·2 , n ~ 3. 

a 
Also one can make the following observation about the sequence of ratios~ 

in terms of continuous fractions: n 

1 3 1 + _!_ 4 1 +_!_ 6 1 +_!_ 
1 I 2 2 I 3= 3 I 4= 2 

8 1 + = [ 1, 1, 1, 2], = 
5 1 +-·1 __ 

1 + .l. 
2 

11 [1, 1, 1, 3], 12 +-1 ·= 
7 8 2 

14 [1, 1, 1, 4], 9 

16 8 [ 1, 1, 1, 2], TO 5 

17 
[1,1,1,5], IT 

19 [1,1,1,2,2], 
12 

21 
[ 1, 1, 1, 1, 1, 2] , etc., T3 = 

where we use the standard notation [ 1, 1, ... , 1, m] for continued fractions. One 

may then conjecture that lim an/n = [1, 1, 1, ... ] =+(1 + y'S'),which isthe 

well-known "golden ratio"~ ;o; large n, we would then have an ~ ~ ( 1 + y'S')n; 

in other words, the points (n, an) lie almost on the line y = ~ ( 1 + y'5)x. So one 

may conjecture that 

where [x] denotes the greatest integer not exceeding x. Indeed this is so. 
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For completeness, we will describe a constructive method for the an, bn: 

a0 = 0, b0 = 0; a1 = 1, b 1 = 2; 

{

an = min (i-J -{a 1 ,bt,a2,b2,···,an-1,bn-1}), 

b = n 

where IN is the set of positive integers. 

The sets { an } , { bn} give a partition of IN. So if one assumes that there exist 
two real numbers ex, {3 such that an = [an], bn = [{3n], n = 1, 2, ... , then by a 
result in elementary number theory (see I.M. Vinogradov, "Elements of number 
theory", Dover, 1954, Problem 3, p. 29; cf. I nterschool Mathematical Competition 
1982, Part B, Contest Problem 2 - this Medley, Vol. 10 (1982), p. 58), we have 

1 1 - +- = 1 
(X {3 

where ex, {3 are irrational. Now, bn = an + n gives [{3n] 
and letting n-+ oo, one gets {3 =ex+ 1. Hence one obtains 

which agrees with the previous observation. 

[an] + n. Dividing by n 

We also note that the triple (n, an, bn) can be described by the so-called 
Fibonacci decomposition of positive integers. It is well-known that every positive 

integer k can be written in the form 

k · = F j
1 

+ . . . + F jr' } 

J
. l - 1.2 2 2 J. - J. 2 2 J. 2 2 .......... ( 1) 

~ ·····r-1 r""" •r""" · 

Furthermore the indices j 1 , ••• , jr are uniquely determined by k. The expression 
in ( 1) is called the Fibonacci decomposition of k. For example, if k = 10, then 
k=8+2=F 6 +F 3. 

Now, if n = F2m, then we have 

{ 

an = F2m + F2m - 2 + F2m - 4 + ... + F2, 

bn = F2m + 1 + F2m - 1 + F2m - 3 + · · · + F3 · 

Otherwise, if n = F j
1 

+ F j
2 

+ ... + F jr' r;;;:. 2, satisfying ( 1), then we have 
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+ Fj + 1 I 

r 

+ F· Jr + 2. 

Table 3 illustrates these facts. 

n an bn 

F2 F2 2 F3 

2 F3 3 F4 5 Fs 

~ 4 F4 + F2 7 = F~ + F3 

4 F4 + F2 6 F5 + F2 10 F6 + F3 

5 Fs 8 F6 13 F1 

6 F5 + F2 9 F6 + F2 15 = F7 + F3 

7 = F5 + F3 11 F6 + F4 18 F7 + F5 

~ 12 F6 + F4 + F2 20 F7 + F5 + F3 

9 F6 + F2 14 F7 + F2 23 F8 + F3 

10 F6 + F3 16 F7 + F4 26 F8 + F5 

11 = F6 + F4 17 F7 + F4 + F2 28 F8 + F5 + F3 

12 F6 +F4 +F 2 19 = F7 + F5 + F2 31 F8 + F6 + F3 

13 = F7 21 Fs 34 F9 

~ 33 = F8 + F6 + F4 + F2 54 F9 + F7 + F5 + F3 

Table 3 

(Ill) A.-game. Let f .IN ~ lR be a given function satisfying f( 1) ~ f(2) ~ f(3) ~ .. , 
f(n) ~ n, n = 1, 2: ... , Then one can define (after Schwenk, Fibonacci Quarterly, 
1966) the following game played by 2 players. Given a pile of stones, denoted by 
(n) E .IN = { 1, 2, ... } . The first player can take i stones from the pile such that 
1 ~ i ~ n - 1. The second player can next take j stones from the pile such that 
1 ~ j ~ f(i), and the first player can then take k stones such that 1 ~ k ~ f(j), and 
so on. There is no passing. The winner is the one who clears the board. 
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The case when f(x) = 2x is considered by Gaskei-Whinihan, Fibonacci Quarterly 
1963. The winning positions for the second player form a sequence { a1 , a2 , •.• } as 
follows: 

where j is the smallest integer such that Fi ~an. 

Example 2. f(x) = 2x. 

{ ai } = { 1, 2, 3, 5, 8, 13, ... } , Fibonacci sequence. 

Example 3. f(x) = y5 x. 

{ ai } = { 1, 2, 3, 5, 8, 13, ... } , Fibonacci sequence. 

Example 4. f(x) 3x. 

{ ai } = { 1, 2, 3, 4, 6, 8, 11, 13, 15, ... } , 

One can show that if the sequence { f(n)/n } approaches monotonically (for 
large n) some real number, then there exists a positive integer R, called the period 
of the sequence { an } , such that an = an _ 1 + an _ R for sufficiently large n. 

The winning strategy for the X-game is given as follows. Using the sequence 
{ ai } , we can express every positive integer in the form 

n = ai 
1 

+ ai2 + ... + a1· r' 

where ai 1 > f(ai2 ), ai 2 > f(ai3). ... , ajr _ 1 > f{ajr), and the indices j 1 , h, ... , jr 
are uniquely determined by n. Let us call this decomposition of n Schwenk's f
decomposition of n. If r = 1, the pile (n) is a winning position for the second player. 
If r > 1, the pile (n) is a winning position for the first player, who can win by 
removing aj stones from the pile (n). This method is called the "tail-cut". 

r 

When f(n) = Xn, X > 1, X a constant, Furuta has shown that the period 
R = R (X) satisfies the inequalities 

log X < R(') ~ log(X + 1) 
log X - log( X - 1) 1\. ~ log(X + 1) - log X · 

As a corollary, we have R(X) "'X log X. 

As an example, if f(x) = 3x, n = 100, the Schwenk decomposition of n is 100 
= 76 + 21 + 3. Hence the first player wins by taking 3 stones out of the pile since the 
tail is 3. 
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(IV) Game version of Coxeter groups. 

Suppose a group G is generat~d by a set S of involutions (i.e. elements of 
order 2), S = { sd i E I } . Then we define the length Q(a) of a E G with respect to S 
by 

{ 

Q(1) = 0, 

a =f=. 1 : Q(a) = min { r I a = si 1 ... Sir' si 1, ... , Sir E SJ. 

An expression a = si 1 .. sim, sii E S, j = 1, ... , m, is said to be redundant if 
m > Q(a). 

The pair (G, S) is called a Coxeter system or Coxeter group with respect to 
the generators S if every redundant expression 

contains 2 indices ip, iq such that p < q and 

We call this the "2-element deletion law". It is known that G then has the following 
presentation with respect to S: 

G = <s1,s2 , ••• 1sr=1,(sisi(ii = 1,mii<oo,i=f=.j>. 

Example 5 

G Sn (the symmetric group fo degree n), 

S = {(12),(23), ... ,(n-1 n)} . 

If a . . . n ) 
... jn 

E G, then 

There is a picturesque way of calculating this number Q(a). To illustrate, let 

n = 5, a = ( 1 2 3 4 5 ) 
54231. 
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Imagine 5 persons called Mr 1, Mr 2, Mr 3, Mr 4 and Mr 5, whose heights 
increase in that order, standing in a row in front of a television set (see Fig. 1). 
A person will complain about another if the latter is taller and in front of him. 
Then Q(a) is equal to the total number of complaints. 

Fig. 1 

The number of complaints of the 5 persons are as follows: 

Mr 1 4 

Mr 2 2 

Mr 3 2 

Mr 4 1 

Mr 5 0 

Total 9 

Hence Q(a) 9. 

In Example 5, (G, S) is known to be a Coxeter group. This fact has an interest
ing game version which makes use of the two-element deletion law of Coxeter 
groups. This game is played by one person. We will give a concrete example 

. (1 2 3 4 5) correspondmg to n = 5, a = 
5 4 2 3 1 

. 

Given 5 vertical segments joined by a finite number of horizontal bridges as 
shown in Fig. 2. The points upstairs are lebelled 1, 2, 3, 4, 5. Starting from each 
of these points, one moves to a point downstairs according to the following rule. 
Movement is always vertically downwards until one comes to a bridge, in which 
case one must cross the bridge. The corresponding destinations for the points 
upstairs are as shown in Fig. 2. The game is this. Given the configuration of bridges 
in Fig. 2, what is the maximum number of bridges that can be removed without 
affecting the destination points? 
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1 2 3 4 5 

1 
" 

2 3 4 
'-' 

1 1\ 4 
L.___J. 

2 \7 4 1 3 
v 

1 5 

3 5 

2 5 3 1 

4 5 2 1 

4 1 
4 2 

1 -= 2 
~ 

1 1\ 4 
L.::1 

2 \7 4 1 3 
v 

5 4 3 2 

Fig. 2 

In this example, we associate to the system of bridges the permutation 

a = ( ~ ~ ~ ~ ~ ) , corresponding to the final positions. By the property of 

2-element deletion of Coxeter groups, the maximum number of bridges that can 

be removed without affecting the positions downstairs is equal to 

the total number of bridges - Q(a); 

in this case: 17 - Q(a) = 17 - 9 = 8. 
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(V) Hironaka's game 

Hironaka has given a game version of the proof of his celebrated desingulari
sation theorem. M. Spivakoskii has recently given a winning strategy for the case 
when the characteristic is zero. The winning strategy for the characteristic p case 
seems to be still unknown. We will only describe the game. 

Given a convex set!::, in ..IR", where 
+ 

such that 

1, ... , n } , 

( 1) !::, is generated by a finite set { v( 1 1, v(2 l, ... , v(lll } , i.e. !::, consists of convex 

linear combinations of v( 1 1, ... , v(lll, where the points v0l have rational coordinates; 

(2) for every (x 1 , .•. , Xn) El::,, x 1 + ... + Xn ~ 1. 

The game is played by 2 players A and B. The first move for player A is to 

choose a subset r (1 ) c { 1, 2, ... , n} such that 

(*) ~ xi ~ 1 for all (x 1 , ••• , Xn) E !::,. 
i E r 

Player B then chooses an element i E I and defines a map .m: -+ .JR: given 
by 

a r. i : (Xi, ... , Xn) -+ (Xl, ... , X~), 

where X~ = ~ Xj - 1, 
I i E r 

x; xi, j =I= i, 

and player B replaces the set !::, by the set!::, (1 1 = a r. i (!::,). The moves are repeated 

in this fashion, thereby giving rise to sets r (1 ), !::,(1), r (2 ), !::,(2 ), ... 

The winner is determined as follows. 

( 1) If there exists p such that there exists (x 1 , ... , Xn) E!::, (pl for which x 1 + ... + 
Xn < 1, then A is the winner. 

(2) If player A cannot find a subset I (pl c { 1, ... , n} satisfying property(*), 
i.e. 

j ~ r (p) Xj ~ 1 for all (x 1 , ... , Xn) E t::,(P- 1), 

then B is the winner. 
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