
A MEDLEY OF MALAYAN MATHEMATICAL MEMORIES AND MANTISSAE 

Richard K. Guy* 

I came to Singapore in 1951. Oppenheim was Head of Department, but was on 
leave, so I was met by Jack Cooke. I think the only members of the department 
were P.H. Diananda and K.M.R. Menon. In 1952 Eric Milner joined us (and later 
in the year Malcolm Wicks) and, was sparked by the visit of external examiner Hans 
Heilbronn, we formed the Malayan Mathematical Society. We soon had many more 
members from schools, both teachers and students, than the Singapore Mathematical 
Society has today.There are good reasons for this (you now have many more 
genuine mathematicians) but I would urge the Society to keep as much contact 
with the schools as it can. That is where your students come from, and this is 
where you can influence the importance of early mathematical training of all 
Singapore's citizens, whether they come to the university or not. I am very pleased 
to see that the Inter-School Mathematical Competitions continue to be held after all 
these years; I'm sure that they do good in a number of ways. 

The early letters to members from the Secretary of the Society soon formalised 
themselves into the Bulletin of the Malayan Mathematical Society (B.M.M.S.). 
Later, largely at Bob Hazell's instigation, this became subtitled, or rather supertitled, 
Nabla. This name continued for a while after it became the Bulletin of the Singapore 
Mathematical Society (B.S.M.S.), the predecessor of the Mathematics Medley. 

Leong Yu Kiang suggested that I write something for the Medley. These are 
some of the things that went through my mind, and some of the comments that 
occurred to me while I was glancing back at earlier issues of the Society's 
publications. 

On page 29 of Vol. 9, No.1 ( Feb.1962) of the B.M.M.S. there's an editorial 
note congratulating Peng Tsu Ann, now head of Department here at N.U.S., on 
receiving a book prize for the best contribution to the Bulletin in 1961 by a 
Junior Member. It says "it appears that no [previous] awards were ever made." 
However, Prof. Teh Hoon Heng, who has been Head of Department at both Nanyang 
University and N.U.S., recently showed me the book prize that he was awarded for 
best contribution by a Junior member in 1955. Even if the announcement wasn't 
published in the Bulletin, I'm sure it must at least be in the Minutes. Louis Chen is 
bravely fighting the termites in an effort to stop these being consumed; I hope he 
is successful! 

In the seventies the editors seem to have been short of material, since there 
was duplication of earlier articles. Perhaps the subject matter was so good that 
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it was worth repeating! For example, in B.S.M.S. Dec. 1972, 45-51, there's a proof 
of J.S. Samy's conjecture (B.M.M.S. 5 (1958) 17) concerning the number of 
3 x 3 magic squares with positive integer entries and central element n. Samy's 
combinatorial intuition was that, modulo 6, the number could be expressed as 
an exercise in linear programming, giving the formula in the form 

2(n- 1 )(n- 3l + 2Ln/2J - 2Un- 1 l/2J - 8L(n- 1 l/3J 

in the same year as the conjecture (B.M.M.S. 5(1958) 87 - 89). As I write this it 
occurs to me that a neater form for the formula is 

8L(3n 2 - 16n + 24)/12j 

Other articles, in B.S. M.S., 1973, 11 - 12 and 1974, 23 - 24, had appeared before 
in B.M.M.S., 9(1962) 77 and 110- 111. 

I'll next comment on some problems, solutions to which appeared in B.S.M.S. 
11, No. 1 (June, 1969) 42 - 44. Peng Tsu Ann gave a trigonometric solution to 
P. 3/66, in which A. Oppenheim asked to show that the maximum value of 

COS tJ 1 + COS fJ2 + ... + COS (j n ( 1 ) 

is n cos(1r/n), where fJ 1 , fJ 2 , ••• , On are positive acute angles with sum 7T. Here is 
a simple geometrical solution of a slightly more general result. 

Imagine a chain of unit rods, laid out as in Figure 1, so that successive tods 
make positive acute angles (} 1 , 02 , ... , ftn with the x-axis. Then the expression ( 1) 
is the length of the projection on the x-axis, which is a maximum when the chain 
is pulled out into a straight line, with all angles equal. If the sum of the angles is 
fixed, s say, then the maximum is n cos(s/n), where s may be any number, 
O<s<n7T/2. 
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figure 1 figure 2 

Problem 4/66 was set by Peng Tsu Ann: given positive integers a, b, c, d such 
that a 2 > 2b 2 > 2d2 > c2 ; using only properties of the integers, show that 
(a - c) 2 > 2(b - d )2 . P. H. Diananda's solution doesn't explicitly use properties 
of the integers, and the result is true for positive real numbers. However, if they are 
integers we can prove a little more. Draw concentric squares of sides a..j2, by'2, 
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cJV2, cy2, the first and last with parallel sides, the others making angles 7T/4 with 
them (Figure 2). A, B, D, C are corners of these squares. The strict inequalities 
demand that the C square is inside the A square, and that corners B, D lie between 
them. AC =a- c, BD = b - d and AC > BDJ2,, so the inequality follows. If a, b, 
c, dare integers, then BD/2 is not, and (a- c) 2 ~ 2(b- d) 2 + 1. To see that this is 
best possible, take a = 10, b = c =7, d = 5. 

There is an unanswered challenge in P. 5/66, proposed and solved by Malcolm 
Wicks: find the number of different "k-deals" from a pack of cards consisting of M 
(different) red cards and Nblue ones, where a k-deal contains k more red cards than 
blue. The answer, "M + N choose N + k" strongly suggests that there is a simple 
combinatorial argument. When I first drafted this article, I couldn't see it. But after 
sleeping on it (the bed and the bathroom are good places for doing mathematics), 
I realized that there was indeed such an argument. 

A k-deal contains k + r red cards and r blue ones for some r, 0 ~ r ~ min 
(M- k, N). For every choice of r blue cards there is a corresponding complementary 
set of N - r blue cards that are not chosen. So every k-deal corresponds to a choice 
of k + r red cards and (the complement of a choice of) N- r blue ones, i.e. N + k 
cards altogether. But every one of the ( NM + kN) choices of N + k cards from the 

\ + I 

pack of M + N will have k + r red cards and N- r blue ones, for some r, 0 ~ r ~ 
min (M- k, N). So these are equinumerous with the number of k-deals(take the r 
blue cards which haven't been dealt,' with the k + r which have). 

Symmetrically, since (f.}: ~) = (~~f), we can argue with red and blue 

cards interchanged. Any choice of M - k cards contain b blue ones, for some b, 
0 ~ b ~min (M- k, N), and hence M- k- bred ones. The corresponding k-deal 
consists of the b blue cards and the k + b red cards not chosen. 

I'll conclude with some remarks about the ubiquitous Catalan numbers. On 
page 108 of B.M.M.S. 7, No. 3 (Oct. 1960) I persuaded Eric Milner, against his 
better judgement (there is an apology in Note 110 on page 68 of B.M.M.S. 8, No.2 
(Apr. 1961), to publish a phoney combinatorial solution to the first part of one of 
the Erdos-Posa problems. On the same page it was stated that we didn't have a 
combinatorial solution to the second part. 

Here is the problem: if An =(~)/(n + 1) 

(i) show that An is an integer, 

(ii) show that An = A
0

A n- 1 + A 1A n- 2 + ... + An_ 1 A
0 

(2) 
and here are two combinatorial solutions to each part. One part of one solution had 
already appeared in a famous paper (Note go in B.M.M.S. 5, No. 45 (Aug. 1958) 
57 - 60) which anticipated papers of John Moon & Leo Moser (Canad. Math. Bull. 
6(1963) 175-178, and of Hans Rademacher (lllinoisJ. Math. 9(1965) 361- 380). 
This was reprinted as the University of Calgary's "Yellow Series", No. 9, together 
with an amplified version of Will Brown's excellent bibliography (Amer. Math. 
Monthly, 72(1965) 973- 977); write to the U. of C. if you want a copy. 
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In each solution we define An as a counting function, so that it is necessarily 
an integer, and we show that it satisfies the convolutionary recurrence (2). We 
conclude, in each case, by showing that our A satisfies the further relation n 

(n + 1) A = 2(2n - 1) A - 1 
n n (3) 

repeated application of which gives 

n!(n +1)! A = (2n)! A 
n o 

In the original definition, and in each of ours, it is appropriate to take A 1, so 
the identity of the various A is established. 

0 

n 

First define A as the number of different ways of dissecting a polygon with n 
n + 2 sides into n triangles by joining n - 1 pairs of vertices with non-intersecting 
diagonals. To make it clear what is meant by "different", we eliminate any questions 
of symmetry by specializing one side of the (n + 2)-gon as a "root" (shown thick in 
Figures 3 to 6). This definition, with Ao = 1, gives A 1 = 1 (triangle), A 2 = 2 (draw 
either diagonal of a quadrilateral), A

3 
= 5 (Figure 3) and A 4 = 14 (In Figure 4a 

there are six vertices at which the three diagonals may meet; in 4b the long diagonal 
can be any one of three, and the pattern of diagonals can form either a letter N or 
its reflexion; in 4c the inside triangle can have either the odd or the even numbered 
vertices of the hexagon for its vertices; 6 + (2 x 3) + 2 = 14). 

figure 3 

5 

figure 4 

To establish the convolution (2), notice that the root side belongs to a unique 
triangle of the dissection (shown shaded in Figure 5). This triangle partitions the 
original (n + 2)-gon into an (r + 2)-gon and an (n - r + 1 )-gon, for one of then 
possible values of r, 0 ~ r ~ n - 1, i.e. the third vertex of the shaded triangle may 
be any one of the vertices of the (n + 2)-gon other than the 2 ends of the root. 
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Note that for the extreme values r = 0 and r = n - 1, one of the two subpolygons is 
a degenerate 2-gon, but that we have defined A 

0 
= 1. The numbers of different 

dissections of the (r + 2)-gon and the (n - r + 1) gon are, by definition, Ar and 
A so n- r - 1 

which is (2). 

r--J .. 

1 

figure 5 

To establish (3) we draw (in our imagination) n + 1 copies of each of the An 
dissections of an (n + 2)-gon, and distinguish them by marking one side, other than 
the root, in each possible way. For example, imagine n + 1 = 4 copies of Figure 3, 
with side a marked in the first, b in the second, c in the third and d in the fourth. 

Also draw 2(2n - 1) copies of each of the An _ 
1 

dissections of an (n + 1) 
-gon, and distinguish these by drawing an arrow on one edge of each dissection. 
There are n + 1 side (we include the root this time) and n - 2 diagonals, 2n - 1 
edges in all, and the arrows can be drawn in either direction, so they just suffice to 
distinguish the 2(2n- 1) copies. We have done this for n = 3 in Figure 6. 

It remains to establish a one-one correspondence between the (n + 1 )An 
diagrams and the 2(2n - 1 )An · l diagrams. To go from Figure 3 to Figure 6, 
collapse the triangle containing the marked side by identifying the points of this 
side, leaving a single edge, and mark it with an arrow pointing from the collapsed 
side to the opposite vertex. 
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Figure 6 

To go from Figure 6 to Figure 3, widen the edge marked with an arrow into a 
dart-shaped triangle, one of whose vertices is the head of the arrow, and the opposite 
side, a new (n + 2)th side of the polygon, corresponds to the tail of the arrow. The 
labelling of Figure '6 corresponds to that of Figure 3, a lettered vertex (the tail of 
an arrow) corresponding to a collapsed marked side. 

The second solution derives from the best known manifestation of the Catalan 
numbers. If we have a string of n + 11etters with the implication that they are to be 
multiplied together, then the result may depend on the order in which then multi­
plications are performed, if multiplication is not associative. In how many ways can 
we insert n pairs of parentheses to indicate the order? We will take this as a new 
definition of An. For example, A 3 = 5: 

(((ab)c)d) ((ab)(cdj) ((a(bc))d) (a((bc)d)) (a(b(cd))) 

To clarify our second pair of proofs, enclose each of then+ 1 individual letters 
in its own pair of parentheses, so that we now have 2n + 1 pairs of parentheses, and 
each expression is now in the shape 

14 



(( . . . r+ 1 ... )( .. . n-r ... )) 

where the two inner pairs of parentheses contain r + 1 letters and n - r letters, for 
some r, 0 .;;;;;; r ~ n - 1. So we again have 

- n-1 AA A11 - .. ~ r = 0 r .(n-r-1) 

which is (2) 

To prove (3) we again imagine n + 1 copies of the An different parenthe­
sizations, distinguishing them by specializing one of the n + 1 letters. In the ex­
ample we replace a letter by an ess. 

( ( ( (s) (b)) (c)) (d)) 
( ( (s )(b)) ( (c )(d))) 
( ( (s) ((b) (c))) (d)) 
( (s)( ( (b)(c) )(d))) 
( (s) ((b) ((c) (d)))) 

( ( ((a) (s)) (c)) (d)) 
(( (a)(s)) ( (c)(d))) 
( ((a) ( (s) (c))) (d)) 
( (a) ( ( (s) (c)) (d)) ) 
((a)( (s)( (c)(d)))) 

( ( ((a )(b) )(s) )(d) ) 
( ( (a)(b )) ( (s) (d))) 
( ((a) ( (b) (s)) ) (d) ) 
((a)( ( (b)(s) )(d))) 
( (a) ((b) ( (s) (d) ) ) ) 

( ( ((a) (b)) (c)) (s)) 
( ((a) (b)) ((c) (s))) 
( ((a) ((b) (c))) (s)) 
((a) ( ((b) (c)) (s))) 
((a)( (b)( (c)(s)))) 

We also imagine 2(2n - 1) copies of the A - 1 different parenthesizations 
of n letters, and distinguish these by replacing a sfngle left or right parenthesis out 
of the 2n- 1 pairs by a left bracket, [,or~ right one,], respectively. 

12 (([b)(c))(d)) 
21 ([b)( (c)(d))) 
11 ([b)(c))(d)) 
10 [ ( (b )(c) )(d)) 
20 [ (b)( (c )(d))) 

13 (((a] (c))(d)) 
22 ((a] ( (c )(d))) 
14 (((a)[c))(d)) 
24 ((a)( (c)(d))) 
23 ((a}l(c)(d))) 

16 (((a)(b)] (d)) 
17 (((a)(b)) [d)) 
15 ( ((a )(b] )(d)) 
25 ((a)((b] (d))) 
26 ( (a)( (b) [d) ) ) 

19 ( ((a )(b) )(c)] 
18 ( ((a )(b) )(c] ) 
29 ((a)( (b )(c))] 
28 ((a) ((b)(c)]) 
27 ((a)((b)(c] )) 

To see the one-one correspondence, notice that the special letter is enclosed in 
parentheses which are nested in other parentheses in one of the forms. 

( (s)( ... ) ) or ( ( ... )(s)) 

and these correspond to 

[ ... ) or ( ... ] 

respectively. In the example, n = 3, An _ 1 = 2, i.e. there are just two different 
parenthesizations of three letters. These are usually written 

1. (xy)z 2.x(yz) 

but we have decorated them with 2n - 1 = 5 pairs of parentheses. Think of the 10 
individual parentheses as being labelled from left to right with the digits 0 to 9. 
The two-digit numbers on the left of the expressions in the second array run from 
10 to 29. The first digit indicates which of the two parenthesizations is represented, 
and the second is the label corresponding to the bracket, [or], which replaces one 
of the 10 parentheses. The two displays are laid out with corresponding expressions 
in corresponding places. 
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Combinatorics hasn't quite acquired the respectability that other branches of 
mathematics sometimes assume, and some people regard proofs of this kind as 
conjuring tricks, designed to delude the observer into thinking that something has 
happened which hasn't really taken place. So, for the infidels, here is how Euler 
might have connected the various formulas (compare B. M. M.S. 5( 1958) 58 and 7 
( 1960) 1 08). 

We take (2), with A.
0 

= 1, as our definition of An and find its generating 
function, 

y = A
0 

+A
1
x + A

2
x 2 +A

3
x 3 + ... 

= 1 + x + 2x2 + 5x 3 + 14x4 + 42x 5 + 132x6 + ... 

by definition. So 

1 +xy2 = 1 +A
1
x+A

2
x 2 +A

3
x 3 + ... = y 

4x2 y 2 - 4xy + 1 = 1 - 4x 

2xy - 1 = - yl 1 - 4x 

where we choose the negative root, since we know that y(o) = 1. Notice that this is 
just formal manipulation and that there is no need to worry about such things as 
convergence, but those who like to worry may take ) xI < 1/4. 

v = (1 -v1 - 4xll2x 

By the binomial theorem, 

=~n = 0 1.3.5 ... (2n-1)2nxn/(n+1)! 

= ~n = 0 (2n)!xn /n!(n + 1)! 

showing that A = (2n)!/n!(n + 1)! as originally defined. Our definition, using (2), 
clearly shows that A is an integer. A simple way to see that this is so from the 

0 

original definition is to note that 

and to use the fact that the binomial coefficients are integers. 
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It has been most gratifying to be in Singapore once again and to see that not 
only is the young island republic making remarkable progress in a great variety of 
ways, but that Mathematics in particular is one of the more lively and flourishing 
aspects. I shall certainly come back, and I shan't wait another 22 years before the 
next time! 
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