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Since the early seventies, the geometry part of the high school 
mathematics curriculum in this region has included topics like vectors, reflections, 
translations, rotations and symmetries to replace part of the more traditional 
geometry curriculum. Transformation geometry has thus been included in the 
"modern mathematics" syllabus. The approach adopted for the study of geometry 
is different from the traditional one. Geometrical proofs of the old have given way 
to activity-oriented proof, using the ideas of symmetry, translation, reflection, 
rotation and enlargement [6]. 

The switch to the new syllabus has led some of us to ask whether this should be 
the type of geometry taught in the secondary schools. Many of our mathematics 
teachers have been trained in and are more familiar with the usual Euclidean 
deductive approach in teaching Euclidean plane geometry. What sort of geometry 
should be taught in the secondary schools remains a controversy. 

The purpose of this note is to relate the classical Euclidean geometry and the more 
recent transformation geometry. Before we do this, let us describe briefly some 
historical facts and the nature of the two geometries. 

§ 2. Euclidean Plane Geometry 

The original (incomplete) axiomatic and deductive geometry was recorded in 
Euclid's lecture notes "Elements" two thousand years ago. After the discovery of 
the so-called non-Euclidean geometry a century and a half ago, the original Eu­
clidean geometry was later reorganised by a number of mathematicians in the early 
twentieth century, notably by Moritz Pasch, Giuseppi Peano, Mario Pieri, David 
Hilbert and G. D. Birkhoff. The (deductive) plane geometry in the traditional mathe­
matics curriculum follows the approach of Euclid and Hilbert. Basically plane 
geometry is treated as a deductive system, using the natural geometry on the plane 
as a model. 

The most important axiom that governs the geometric part of the deductive system 
is the congruence postulate which says that two triangles are congruent if the two 
sides and the included angle of one triangle are congruent to two sides and the 
included angle of the other triangle, whereas the parallel postulate guarantees that 
the plane is Euclidean! 
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Let us state the Euclid parallel postulate. 

"If a transversal falls on two lines in such a way that the interior angles on 
one side of the transversal are less than two right angles, then the lines must 
meet on that side on which the angles are less than two right angles" 

This postulate is equivalent to the following Playfair's parallel postulate: 

"Through a point not on a given line, exactly one line can be drawn in the 
plane parallel to the given line. " 

It is from the parallel postulate that we can prove theorems like those which 
state that the sum of the interior angles of a triangle is 180° and that the sum of 
the interior angles of a quadrilateral is 360~ Theorems of this nature characterize 
the fact that the underlying space is plane. 

On the other hand, let us modify the parallel postulate as follows: 

"Through a given point C, not on a given line AB, there pass at least two 
lines which do not intersect the given line." 

Then we shall get the hyperbolic geometry where the sum of the interior angles of a 
triangle is less than 180°. 

If we change the parallel postulate to: 

"Through a given point not on a given line, there is no line through the given 
point parallel to the given line." 

Then we would get the elliptic geometry, the kind of geometry on a sphere where 
any two "lines" intersect and the sum of the interior angles of a triangle is greater 
than 180°. 

From Euclid's parallel postulate, we obtain only some qualitative data about the 
plane but we cannot say anything about the size or shape of an object in the plane. 
To be able to do this we need the SAS congruence postulate which states that 

"Given two triangles~ ABC and~ A'B 'C', if the congruences AB=A'B', 
AC=A'C' and .(BAC = h..B'A'C' hold then the congruences 

1.. ABC= A.A'B'C', ( ACB = LA'C'B' and BC = B'C' hold." 

It is this postulate that leads to some of the beautiful results in plane geometry. For 
example we have the following. 
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Theorem SAS congruence condition is equivalent to SSS congruence condition. 

Theorem The locus of all points equidistant from two points M & N is the perpendi­
cular bisector of MN. 

sin A sin B sin C 
Theorem In a triangle ABC, --a-= -b- = -c-

We would not give details here. For a detailed development of (deductive) 
Euclidean plane geometry, the reader is referred to [2]. 

§ 3. From Euclidean Geometry to Transormation Geometry 

After M. Pasch and many others had systematically reorganized Euclidean 
geometry along the spirit of Euclid's "Elements", Mario Pieri adopted a quite 
different approach in a study of Euclidean geometry in 1899. He considered the 
subject of his study to be an aggregate of undefined elements called "points" and an 
undefined concept called "motion". For example, a straight line AB is the set of 
points which remain fixed under any effective motion which leaves A and B fixed. 

Although Pieri's treatment of Euclidean geometry was not widely accepted, the 
development of certain modern concepts is apparent. We have for instance, the idea 
of transformation as a mapping. Pieri's motions are the so-called direct isometries 

x' =ax+ by+ h 
y' =ex+ dy + k (

a, b) 
where det c, d = 1 

He considered Euclidean goemetry as the study of the properties and relations of 
configurations of points which remain invariant under the group of direct isometries. 
This idea had earlier (in 1972) been generalized, in the famed Erlanger Programm, to 
form the basis of Felex Klein's remarkable codification of geometries. According to 
Klein, a geometry (not necessarily Euclidean goemetry) can be characterized by a 
group of transformations and the definitions and theorems of the geometry are 
simply the invariants, invariant properties and invariant relations under the group of 
actions. 

Thus the study of geometry, as an empirical experience and later as a deductive 
system, has been reduced to the algebra of group actions on the underlying space. 
We shall discuss briefly in the next section some ideas and concept in transformation 
geometry. 

§ 4. Transformation Geometry 

Let us recall some of the basic concepts in transformation geometry. A reflection 

59 



RQ in a line !1. is the mapping defined by 
p 

Q 

0 

RQ (P) = { 

p 1 if p E'!l. 

0 , if P 4: Q and 

Q is the perpendicular bisector 
of the line PO. 

An isometry of the plane R2 is a transformation (one to one, onto mapping) which 
preserves distances. Reflections and translations are isometries of the plane. It is 
easy to see the set of isometries form a group [ 4] . The next question is whether the 
set of reflections and their products form a group. The answer is "yes". In fact the 
group of all reflections and their products is the same as the group of all isorretries. 

Theorem: A product of reflections is an isometry. Every isometry is a product of at 

most three reflections. 

Proof: It is clear that a product of reflections is an isometry. 

Now we want to prove the second statement in the theorem. 

If the isometry fixes two points or more, then it can be easily shown to be either 
an identity or a reflection. 

We then show that an isometry T that fixes exactly one point P is a product of 
two reflections. Let 0 be a point different from P. Let 0' = T (0) and let Q be 
the perpendicular bisector of 
00'. Since Tis an isometry, 
T(P)=P and T(O)=O',we 
have PO =PO' and P is a point 
on the line Q. 

p 
0 

Therefore RQ (P) = P and RQ (O) = 0'. Then RQ T(P) = RQ(P) = p and RQT(O) = 
.RQ (0'} = 0: Thus the isometry RQT fixes two points P and 0. Hence RQ T 
IS the 1dent1ty transformation or a reflection. However R Q T cannot be the identity 
because this would imply that RQ R Q T = R Q, that is, T = RQ., a reflection that fixed 
m?re t~an one point. Hence R Q Tis a reflection, that is, RQ T = Rm for some line m. 
W1th th1s T = R !1. Rm a product of two reflections. 

Now, for an arbitrary isometry T, let us suppose T sends point P to a different 
point 0. Let m be the perpendicular bisector of PO. Then RmT fixes P. Thus RmT 
must be a product of at most 2 reflections. If Rm T is the product of R and R , 
that is, Rm T = R Q R Q. Then T = ~mR Q RQ, a product of three reflections. !1.

1 Q2 

1 2 1 2 
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A translation of the plane is also an isometry. Perhaps the reader should try to 
convince himself/herself that a translation is a product of reflections? (How many?) 

In Euclidean plane geometry, there are three different relations indicated by the 
same words "is congruent to", one for segments, one for angles and one for 
triangles. All three can be combined under a generalized defination that applies to 
arbitrary geometrical objects in the plane in transformation geometry. Two objects 
S1 and ~are said to be congruent if three exists an isometry T such that T(S 1 ) = S.z. 
For example, a geometric figure s, in the plane is congruent to another figure Sz if 
there exists RQ such that Sz = RQ(S 1 ). In this cases, is certainly symmetric to Sz. 
The concept of symmetry plays an important part in transformation geometry. 

We can now answer the question, "what is transformation geometry?". It is the 
study of invariants, invariant properties and invariant relations in the plane under 
the group of isometries. Since isometries preserve, for example, betweenness, mid­
points, segments, rays, triangles, rectangles, conic sections, angles and perpendicu­
larity, these form the subjects of study in transformation geometry. 

For a particular object, say a rectangle ABCD which is not a square. The question 
here is: What are the properties of the rectangle that are of geometric importance? 

h -j 
We look at the symmetry group of the rectangle, namely all the isometries which 
transform the rectangle into itself. These are the symmetries of the rectangle. 
It consists of the reflection Rh,Rv w.r.t. the two axes, the 180° rotation T0 and the 
identity transformation I. Thus the symmetry group of rectangle ABCD is a group 
of four elements V4 = (1, To , Rh, Rv ). The geometry of the rectangle ABCD 
comprises invariant relations under the actions of the group V4 • From the group of 
symmetries, we know that the size of an interior angle remains invafiant (that is, all 
four interior angles are the same). From this, we see that the four interior angles 
being equal is a goemetrical property of the rectangle. In fact, the following figure 
has the same group of symmetry. The reader could determine some of its geometric 
properties. 
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In general, the symmetries of a set S in the plane form a group called the 
symmetry group of S. And the geometry of the set S is the study of the group 
actions of the symmetry group acting on S. 

Let us look at the geometry of an (non-equilateral) 
isosceles 6ABC, where AB = AC. One of the known geo­
metric facts 6 ABC is that b.,B = b._C. To be able to say 
this, we must first look at the symmetry group Ll.ABC. 
We first reflect 6ABC to 6 A'BC. Then AA' is perpendi-· 
cular to BC. Now it is clear that the symmetry group of 
6 ABC is (I, R A A' ) • Since A. B and 6.. C are the same under 
the actions of the group, the fact that L B = LC is a geo­
metrical property attached to 6ABC. 

\ 
\ 
\ 
\ 

I 

I I ,,, 
'y 

I 
I 

I 

In transformation geometry, there are new areas of application where traditional 
Euclidean geometry did not cover. The following monohedral tiling fact from the 
tiles manufacturing industry is a typical example. We say that a geometric figure F 
tiles the plane if F can be used repeatedly to cover the whole plane. 

Theorem : Any triangle tiles the plane; any quadrilateral tiles the plane. A hexagon 
with a point of symmetry tiles the plane. 

For a proof, please refer to [5]. 
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§ 5. The Relationship Between Traditional Euclidean Geometry and -Transformation 
Geometry 

In traditional Euclidean geometry, the parallel postulate more or less defines that 
the underlying space is a plane, i.e. the sum of the interior angles of a triangle is 
180°. On the other hand, in transformation geometry, we started on an Cartesian 
plane, and this plane can be defined deductively through vector algebra [ 1] . The 
parallel concept used in vector algebra is Euclidean. Thus the underlying plane used 
in both geometries is essentially the same. 

As we have mentioned in § 2, the most important geometric tool used in deve­
loping the traditional Euclidean goemetry on the plane is the congruence axiom, 
namely, two triangles are congruent if they satisfy the SAS criterion. Now, in trans­
formation goemetry, two triangles L1, and 6.2 are congruent if there exists an 
isometry T (which is the product of at most three reflections) such that T( L11 ) = 
/12 . These two congruence concepts mean the same thing as in the following 
theorem. 

Theorem: L1ABC and 1::.. XYZ have the SAS property if and only if there exists an 
isometry T such that T(A) =X, T(B) = Y and T(C)= Z. 

Proo[- If there exists an isometry T such that T(A) = X
1 

T(B) = Y and T(C) = Z, 
then certainly .6.ABC and AXYZ has the SAS property. 

Conversely, if b..ABC and t::.XYZ has the SAS property, we shall show that there 
exists such an isometry T. 

c 
\ 

\ 
\ 

I 

I 
I 

B - -~--
L-------A-;:--- \ 

I 
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If X = A, take T1 to be the identity transformation. If X/ A, let T1 be the reflec­
tion in the perpendicular bisector of AX. In either case T 

1
(A) =X. Let B1 = T1 (B) 

and C 1 = T, (C). If B, = Y, let Tz be the identity transformation. If Br1 1 Y, letT 2 
be the reflection in the perpendicular bisector of B1 Y. Observe that X lies on this 
perpendicular bisector because XY = AB = XB1 • Therefore in either case, T 2 (X) = 
X, T2(B 1) = Y. Let C2 = T2(C1 ). 

If C2 = Z, let T3 be the identity transformation. If C2 I Z, let T 3 be the 
reflection in the perpendicular bisector of C2Z. Observe that the line XY is in fact 
the perpendicular bisector because XZ = AC = XC 1 = XC2 and YZ = BC = B 1C 1 = 
YC2. Thus in either case T 3(X) =X, T 3(Y) = Y and T 3(C2) = Z. 

Now letT= T3 T2 T 1 • Then 

T(A) = T3 T2 T1 (A)= T
3 

T2 (X)= T3 (X) =X, 

T(B) = T3 T2 T1 (B) = T3 T2 (81) = T3 (Y) = Y, 

and T(C) = T3 T2 T1 (C)= T3 T2 (C 1) = T3 (C2) = Z. 
Q.E.D. 

In proof of the above theorem, we used the fact that .1 ABC and .1 XYZ has the 
SSS property which is equivalent to SAS. 

From the above theorem, we see that congruence axiom in traditional Euclidean 
goemetry is equivalent to the reflection and symmetry in transformation geometry. 
Hence we conclude that it is essentially the same plane goemetry in both approaches 
but the two approaches are quite different in spirit. 

§ 6. Teaching Transfonnation Geometry 

Students are learning modern concepts like translation or rotation in high schools 
today. However many teachers may not see why such ideas in transformation 
geometry are taught and may even feel that students are learning a topic that leads 
to nowhere. The importance of geometry can be seen in the work of many factory 
workers such as fitters, carpenters and others in engineering work. It is interesting 
to see how a construction worker determines the corner of a house or to watch how 
a worker cuts out the exact length to fit certain engineering need. The importance 
of geometry calls for the teaching of the subject in a proper manner. 

In teaching transformation geometry, the teacher must not forget to discuss 
ordinary symmetries that occur in real life. After some knowledge in goemetry, a 
very good way to introduce the basic concepts in transformation geometry, perhaps 
in Form Three, is to begin with the symmetry and homogenity of a plane. From 
the symmetry of a plane we can define reflection for the plane. 1 n fact, it 
is due to the fact that the plane is symmetric about any line that we are 
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able to define reflection in a given line. By homogenity of the plane is meant the 
geometry at and around a point is the same as that at and around any other point. 

Concepts like reflection, rotation and translation are being introduced in Forms 
Two and Three, but very seldom do we find that these concepts are linked together. 
For example, we have the following important results. 

Theorem A 

If two straight lines 21 , and 2·2 are parallel and are at a distance of h from one 
another, then a translation of 2h in the direction perpendicular to the two parallel 

lines can be regarded as the result 
of reflection in line 2, followed by 
reflection in line 22 • 

-- .,_-+--·­
A A' A" 

Theorem B 

If two straight I ines 21 and £2 intersect at an angle e then reflection in 21 followed 
by reflection in 22 resu Its in a rotation of angle 2 (} about the point of intersection 
o. 

Any rotation about a point is the result of combining two such reflections. 

The above two results should also help students in understanding the composition 
of two transformations. 

After rotation, translation and reflection have been linked we could then go ahead 
with determining other elementary goemetrical facts. What follows then would not 
be very different from what is done in Euclidean geometry. 
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§ 7. Conclusion 

Formal deductive proofs in transformation geometry can be made more 
convincing with the help of paper folding. Use of paper folding in transformation 
geometry would also enhance the learning of geometrical ideas in students. Via 
paper folding and geometrical construction, geometry would appear "real" to the 
students. Geometrical construction appears to be neglected in schools perhaps 
partly because of the examination system. But this topic may be very useful to 
those who may not do well academically in school and later drop out of school to 
pick up some technical skills. Moreover, geometrical construction would provide 
training for students to use intuition, imagination and geometrical pattern in their 
thinking. Transformation geometry provides a good link between geometry and 
algebra. Earlier exposure to well-taught transformation geometry would also 
prepare students well for ideas and concepts in later study of mathematics. 

References 

[ 1] G.Choquet, Geometry in Modern Setting, 1969. 

[2] H.Eves, A survey of Goemetry, 1972. 

[3] D.Hilbert, Grundlagen der Geometrie, 1930. 

[ 4] Wu-Yi Hsiang, The Origin and Development of Geometry (in Chinese), 1983. 

[5] G.Martin, Transformation Geometry, 1962. 

[6] Buku Sumber Matematik, Dewan Bahasa dan Pustaka, 1981. 

66 


