Attempt as many questions as you can. Circle your answers on the Answer Sheet provided.

Each question carries 5 marks

1. The largest positive integer which divides $n^5 - n$ for all positive integers n is:
 (a) 1, (b) 15, (c) 30, (d) 60, (e) none of the preceding

2. Let r, s be roots of $ax^2 + bx + c = 0$. Then the equation whose roots are $ar + b$ and $as + b$ is:
 (a) $x^2 - bx - ac = 0$
 (b) $x^2 - bx + ac = 0$
 (c) $x^2 + 3bx + ca + 2b^2 = 0$
 (d) $x^2 + 3bx - ca + 2b^2 = 0$
 (e) none of the preceding.

3. The remainder when $x^{120} + 1$ is divided by $(x + 1)^2$ is:
 (a) 2, (b) $x + 3$, (c) $-x + 1$, (d) $2x + 4$, (e) none of the preceding

4. Let m, n be integers with $1 < m \leq n$. We define:

 $$f(m, n) = (1 - \frac{1}{m}) (1 - \frac{1}{m+1}) (1 - \frac{1}{m+2}) \ldots (1 - \frac{1}{n}).$$

 Then $f(2, n) + f(3, n) + \ldots + f(n, n)$ is equal to:
 (a) $1/n$, (b) $n/2$, (c) $(n-1)/2$, (d) $n(n-1)$, (e) none of the preceding

5. A line segment is divided into three random parts. Then the probability that these three parts form the sides of a triangle is:
 (a) $1/4$, (b) $1/3$, (c) $1/2$, (d) $1/5$, (e) none of the preceding

6. Let $695 = a_1 + a_2.2! + a_3.3! + \ldots + a_n.n!$, where a_1, a_2, \ldots, a_n are integers and $0 \leq a_k \leq k$ for each k. Then a_4 is equal to:
 (a) 0, (b) 1, (c) 2, (d) 3, (e) none of the preceding

7. Let S be the solution set of the simultaneous equations $(x-1)^2 + (y+2)^2 + (z-5)^2 = 64$ and $(x+3)^2 + (y-1)^2 + (z+7)^2 = 25$, where x, y and z are real numbers. Then,
(a) S is an empty set.
(b) S is a singleton.
(c) S is a finite set with more than one element.
(d) S represents a straight line.
(e) none of the preceding.

8. The value of \(\int_{\pi/3}^{2\pi/3} \frac{x}{\sin x} \, dx \) is equal to:

(a) \(-\frac{\pi}{2} \ln 3\)
(b) \(-\frac{\pi}{3} \ln 3\)
(c) \(-\frac{\pi}{4} \ln 3\)
(d) \(-\frac{\pi}{6} \ln 3\)
(e) none of the preceding

9. Given that \(2x + y = 12\), the maximum value of \(\log_4 x + \log_2 y\) is:

(a) \(9/2\)
(b) 4
(c) 7/2
(d) 7/3
(e) none of the preceding

10. Let \(A\) be a 3 by 3 determinant such that all the entries of \(A\) are between \(-1\) and 1 inclusive of \(-1\) and 1. Then the maximum value of \(A\) is:

(a) 4
(b) 4.5
(c) 5
(d) 5.5
(e) none of the preceding.
SATURDAY, 29 JUNE 1985

INTERSCHOOL MATHEMATICAL COMPETITION 1985

ATTEMPT AS MANY QUESTIONS AS YOU CAN.

PART B

SATURDAY, 29 JUNE 1985

1100 – 1300

1. Let \(\triangle ABC \) be a triangle with \(\angle A = 4 \angle C \) and \(\angle B = 2 \angle C \). Show that \(\frac{BC + CA}{AB} = \frac{BC}{CA} \).

2. \(X, Y \) and \(Z \) are integers such that \(X^3 + 3Y^3 + 9Z^3 = 0 \). Prove that \(X = Y = Z = 0 \).

3. A real polynomial \(p(x) = ax^2 + bx + c \) (\(a > 0 \) and \(b > 0 \)) is such that \(|p(x)| \leq 1 \) for \(|x| \leq 1 \). Let \(q(x) = cx^2 + bx + a \). Show that \(|q(x)| \leq 2 \) for \(|x| \leq 1 \).

4. Prove that \(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \) for \(n > 1 \) is never an integer.

5. Denote by \((x, y) \) the greatest common divisor of two positive integers \(x \) and \(y \). Let \(a \) and \(b \) be two positive integers such that \((a, b) = 1 \) and let \(p \geq 3 \) be a prime. Denote \(aP + bP \).

6. Let \(n \) and \(r \) be integers with \(0 < r \leq n \).

\(i \) Show that

\[\binom{n}{r} + \binom{n-1}{r} + \binom{n-2}{r} + \cdots + \binom{r}{r} = \binom{n+1}{r+1}. \]

Assume \(r \geq 1 \) and let \(\{A_1, A_2, \ldots, A_{\binom{n}{r}}\} \) be the collection of \(r \)-element subsets of the set \(S = \{1, 2, \ldots, n\} \). For each \(i = 1, 2, \ldots, \binom{n}{r} \), denote by \(m_i \) the smallest number in \(A_i \). Show that

\(ii \) \(1 \leq m_i \leq n-r+1 \);

\(iii \) \(m_1 + m_2 + \ldots + m_{\binom{n}{r}} = \sum_{m=1}^{n-r+1} \binom{n-r}{r-1} m \); and

\(iv \) the arithmetic mean of \(m_1, m_2, \ldots, m_{\binom{n}{r}} \) is \(\frac{(n+1)}{(r+1)} \).
1. We have \(n^5 - n = n(n-1)(n+1)(n^2+1) \). As \(n-1, n \) and \(n+1 \) are three consecutive integers, we see that \((n-1)n(n+1) \) is divisible by both 2 and 3 and hence by 6. Moreover if the unit digit of \(n \) is 0, 1, 4, 5, 6, 8 or 9, then \((n-1)n(n+1) \) will also be divisible by 5 and hence by 30; while if the unit digit of \(n \) is 2, 3, or 7, then \(n^2+1 \) will be divisible by 5. Hence, in any case \(n^5 - n \) is always divisible by 30. As \(n^5 - n \) is equal to 30 when \(n = 2 \), the correct answer is (c).

2. As \(r, s \) are roots of \(ax^2 + bx + c = 0 \), we have \(r+s = -b/a \) and \(rs = c/a \). Now, \((ar+b)+(as+b) = a(r+s)+2b = b \) and \((ar+b)(as+b) = a^2rs+ab(r+s)+b^2 = ac-b^2+b^2 = c \). So the equation whose roots are \(ar+b \) and \(as+b \) is: \(x^2 - bx + ac = 0 \). Hence the correct answer is (b).

3. Let \(x^{120} + 1 = (x + 1)^2 Q(x) + ax + b \). Put \(x = -1 \), we have

\[-a + b = 2 \quad \text{(I)}\]

Differentiating the above equation with respect to \(x \), we have:

\[120x^{119} = 2(x+1)Q(x) + (x+1)^2 Q'(x) + a.\]

Put \(x = -1 \), we obtain:

\[a = -120 \quad \text{(II)}\]

From (I) and (II), we obtain \(b = -118 \). So the remainder is \(-120x - 118\). The correct answer is (e).

4. We have \(f(m, n) = [(m-1)m(m+1)\ldots(n-1)]/[m(m+1)(m+2)\ldots n] = (m-1)/n \). Thus \(f(2, n) + f(3, n) + \ldots + f(n, n) = [1 + 2 + \ldots + (n-1)]/n = (n-1)/2 \). Therefore the correct answer is (c).

5. Without loss of generality, we may assume that the line segment is the unit interval on the real line from 0 to 1. To divide the line segment into three random parts, we need only to choose two random numbers \(0 \leq x \leq y \leq 1 \). All such pairs \((x, y)\) form a triangle with area 1/2 in the \(xy\)-plane as shaded in the following figure. The three parts will form the sides of a triangle if the inequalities as given below hold:
(i) \(x + (y-x) > 1 - y \) \(\Rightarrow \) \(y > 1/2 \) i.e. \(y > 1/2 \)

(ii) \(x + (1 - y) > y - x \) \(\Rightarrow \) \(y - x < 1/2 \) i.e. \(y - x < 1/2 \)

(iii) \((y - x) + (1 - y) > x \) \(\Rightarrow \) \(x < 1/2 \) i.e. \(x < 1/2 \).

All pairs \((x, y)\) satisfying (i), (ii) and (iii) above form a triangle with area \(1/8\), as indicated in the doubly shaded region in the figure. Hence, the required probability is \([1/8] / [1/2] = 1/4\). The correct answer is (a).

6. The largest \(n \) with \(n! \leq 695 \) is 5. As \(5 \times 5! = 600 < 695 \), we have \(a_5 = 5 \). Now \(695 - 600 = 95 \) and the largest \(n \) with \(n! < 95 \) is 4. As \(3 \times 4! = 72 < 95 \), we have \(a_4 = 3 \). So the correct answer is (d).

7. In \(\mathbb{R}^3 \), the equation \((x-1)^2 + (y+2)^2 + (z-5)^2 = 64\) represents a sphere with centre at the point \(A(1, -2, 5) \) and radius equal to 8 units. The equation \((x+3)^2 + (y-1)^2 + (z+7)^2 = 25\) also represents a sphere with centre at the point \(B(-3, 1, -7) \) and radius equal to 5 units. Now, \(AB = 13 = 8 + 5 \), from which we conclude that \(S \) must be a singleton. Hence the correct answer is (b).

8. Let \(y = \pi - x \). Then we have

\[
\int_{\pi/3}^{2\pi/3} \frac{2\pi}{3} \frac{(x/\sin x)}{dx} = - \int_{2\pi/3}^{\pi/3} (\pi - y)/\sin (\pi - y) \ dy
\]

\[
= \int_{\pi/3}^{2\pi/3} (\pi - y) \sin y \ dy
\]

24
\[\int_{\pi/3}^{2\pi/3} \frac{\tan y}{\sin y} \, dy - \int_{\pi/3}^{2\pi/3} \frac{\tan y}{\sin y} \, dy = \ln(\csc y - \cot y) \bigg|_{\pi/3}^{2\pi/3} \]

\[\int_{\pi/3}^{2\pi/3} \frac{\tan y}{\sin y} \, dy. \]

Hence, \[\int_{\pi/3}^{2\pi/3} \frac{x}{\sin x} \, dx = \pi/2 \ln(\csc y - \cot y) \bigg|_{\pi/3}^{2\pi/3} \]

\[= \frac{\pi}{2} \ln 3. \]

So the correct answer is (a).

9. We have \(y = 12 - 2x = 2(6 - x), \) \(y > 0 \) and \(x > 0. \) Hence \(0 < x < 6. \)

Moreover, \(\log_4 x + \log_2 y = \log_2 x / \log_2 4 + \log_2 2 (6-x) \)
\[= (1/2) \log_2 x + 1 + \log_2 (6 - x) \]
\[= (1/2)(2 + \log_2 x + 2\log_2 (6 - x)) \]
\[= (1/2)(2 + \log_2 x (6 - x)^2). \]

Let \(f(x) = x(6 - x)^2. \) Then \(f'(x) = 3(x - 2)(x - 3) \) and \(f''(x) = 6(x - 4). \) We see that \(f'(x) = 0 \) iff \(x = 2 \) for \(0 < x < 6. \) Also, \(f''(2) = -12 < 0. \) So \(f(x) \) has a maximum value when \(x = 2. \) Also when \(x = 2, \) \(\log_4 x + \log_2 y = (1/2)(2 + \log_2 32) = 7/2. \)
The correct answer is therefore (c).

10. Let \((aij) \) be the \(3 \times 3 \) matrices with entries \(a_{ij} \) and let \(A_{ij} \) be the determinant by deleting the \(i \)th row and the \(j \)th column from \(A. \) Then
\[A = \sum_{i=1}^{3} (-1)^i \cdot a_{ij}A_{ij} \text{ for } i = 1, 2, 3. \]

It is easy to see that we can change \(|aij| \) to 1 without decreasing the value of \(A. \) Hence \(A \) can achieve its maximum value when \(|aij| = 1 \) for all \(i, j. \) Thus we may assume that \(|aij| = 1 \) for all \(i, j. \)
Next, we note that \(A \) is the volume of the parallelepiped formed by the vectors \((a_{11}, a_{12}, a_{13}), (a_{21}, a_{22}, a_{23}) \) and \((a_{31}, a_{32}, a_{33}). \) Hence \(A \leq \)
Finally, we see that A is the sum of six terms which are either $+1$ or -1. Since $A < 6$, at least one of these six terms must be -1. Hence $A \leq 4$. As

\[
\begin{vmatrix}
1 & -1 & 1 \\
1 & 1 & -1 \\
1 & 1 & 1 \\
\end{vmatrix} = 4
\]

we conclude that the maximum value of A is 4. The correct answer is therefore (a).
1. We have $\angle A = 4\angle C$, $\angle B = 2\angle C$ and $\angle A + \angle B + \angle C = \pi$. Hence $\angle C = \pi/7$, $\angle B = 2\angle C$ and $\angle A = 4\angle C$. From this, we have: $BC = k\sin(4\angle C)$, $CA = k\sin(2\angle C)$ and $AB = k\sin(\angle C)$ for some constant k. Therefore we need only to show now that $(\sin(4\angle C) + \sin(2\angle C))\sin(\angle C) = \sin(4\angle C)\sin(2\angle C)$. Indeed, we have:

$$(\sin(4\angle C) + \sin(2\angle C))\sin(\angle C) = (2\sin(3\angle C)\cos(\angle C))\sin(\angle C) = \sin(3\angle C)\sin(2\angle C) = \sin(\pi - 3\angle C)\sin(2\angle C) = \sin(4\angle C)\sin(2\angle C),$$

as required.

2. Suppose to the contrary that there exist integers X, Y, and Z not all zero satisfying the given equation. Without loss of generality, we may assume the greatest common divisor of X, Y, and Z is 1. As $X^3 + 3Y^3 + 9Z^3 = 0$, we see that 3 divides X, say $X = 3A$ for some integer A. By substitution, we get $27A^3 + 3Y^3 + 9Z^3 = 0$. Dividing this equation throughout by 3, we get $Y^3 + 3Z^3 + 9A^3 = 0$. Therefore, 3 divides Y, say $Y = 3B$. Again, by substitution, we have $27B^3 + 3Z^3 + 9A^3 = 0$, i.e. $Z^3 + 3A^3 + 9B^3 = 0$. Hence, we have 3 divides Z. This however contradicts the fact that X, Y, and Z have greatest common divisor 1. We thus conclude that $X = Y = Z = 0$, as required.

3. Substituting $x = 1$, 0 and -1 respectively into $p(x)$, we get

$$|a + b + c| \leq 1 \quad \text{and} \quad |c| \leq 1 \quad \text{and} \quad |a - b + c| \leq 1.$$

Therefore, $|a + b| = |a + b + c - c| \leq |(a + b + c)| + |c| \leq 2$ and $|a - b| = |a - b + c - c| \leq |a - b + c| + |c| \leq 2$. Now let x be any real number with $|x| \leq 1$. If $c \geq 0$ then we have: $0 \leq cx^2 \leq c$ and $-b \leq bx \leq b$. Thus, $-2 \leq a - b = 0 + (-b) + a \leq q(x) = cx^2 + bx + a \leq c + b + a \leq 1$. Hence $|q(x)| \leq 2$ for $|x| \leq 1$, as required. On the other hand, if $c < 0$, we have $c \leq cx^2 \leq 0$ and $-b \leq bx \leq b$. Then, $-1 \leq c - b + a \leq q(x) = cx^2 + bx + a \leq 0 + b + a \leq 2$. This again gives $|q(x)| \leq 2$, which completes the proof.

4. Assume $\sum_{i=1}^{n} 1/i \in \mathbb{Z}$. We may assume that $n > 2$. Let the least common multiple of $1, 2, \ldots, n$ be a. There is an r in \mathbb{Z} ($r > 0$) with $2^r \leq n < 2^{r+1}$. Let $a = 2^r3^s5^t \ldots$ be the prime decomposition of a. Since $n > 2$, we have $a/2 \in \mathbb{Z}$. We
then have: \((\frac{1}{2}a)/2' \notin \mathbb{Z}\) by definition of \(r\), and

\[
(\frac{1}{2}a)/j \in \mathbb{Z} \text{ for } 1 \leq j \leq n, j \neq 2' \tag{*}
\]

But \(a/2 \in \mathbb{Z}\), and by assumption \(\frac{a}{j} \in \mathbb{Z}\) for \(1 < i < n, i \neq 1\), thus \(\frac{a}{j} \in \mathbb{Z}\). On the other hand, by (*) we find that \(\frac{a}{j} \notin \mathbb{Z}\). This is a contradiction.

5. We have \(a + b = \alpha t\) and \((a^t + b^t)/(a + b) = \alpha s\) for some positive integers \(t\) and \(s\). Therefore \(\alpha^2 ts = a^t + b^t = a^t + (\alpha t - a)^t = \alpha^t t^p - p\alpha t \alpha^t - 1 t^p - 1 + \ldots + p\alpha \alpha^t - 1 t^p - 1\). Hence \(\alpha s = \alpha^t t^p - 1 - p\alpha t^p - 2 t^p - 2 + \ldots + p\alpha p - 1\). From this, we see that \(\alpha \mid pa^t - 1\). We shall show that \((\alpha, a) = 1\). Suppose to the contrary that \((\alpha, a) = k > 1\). Let \(q\) be a prime factor of \(k\). Clearly, \(q\mid k\), \(q\mid \alpha\) and \(q\mid a\).

Since \(\alpha \mid a + b\), \(q\mid a + b\) and so \(q\mid b\). But then \((a, b) \neq 1\), a contradiction. Thus \((\alpha, a) = 1\), as required.

Now, since \(\alpha \mid pa^t - 1\) and \((\alpha, a) = 1\), it follows that \(\alpha \parallel p\) and so \(\alpha = 1\) or \(\alpha = p\), which completes the proof.

6. (i) The identity can be proved by induction on \(n\), using the following result:

\[
\binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1}
\]

(ii) Let \(A_r = \{a_1, a_2, \ldots, a_r\}\) where \(m_1 = a_1 < a_2 < \ldots < a_r\). Then \(m_1 + m_2 + \ldots + m_{r-1} + 1 \geq \ldots \geq a_1 + (r-1) = m_1 + (r-1)\), which implies that \(m_i \leq n-r+1\). The fact that \(1 \leq m_i\) is trivial.

(iii) For each \(m\) with \(1 \leq m \leq n - r + 1\), the number of \(r\)-element subsets of \(S\) containing \(m\) as the smallest number is \(\binom{n-m}{r-1}\). Thus

\[
m_1 + m_2 + \ldots + m_n = \sum_{m=1}^{n-r+1} m \left(\binom{n-m}{r-1} \right)
\]

(iv) By applying the identity in (i) repeatedly, we have

\[
m_1 + m_2 + \ldots + m_n = \sum_{m=1}^{n-r+1} m \left(\binom{n-m}{r-1} \right)
\]
Thus the arithmetic mean of m_1, m_2, \ldots, m_n is

$$\frac{n+1}{r+1} \cdot \binom{n}{r} = (n+1)/(r+1).$$