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In trod net ion 

My intention in this talk is to study, grosso modo, the dominant trends 
in present-day mathematics, and to draw from this study principles that 
should govern the choice of content and style in the teaching of mathematics 
at the secondary and elementary levels. Some of these principles will be 
time-independent, in the sense that they should always have been applied 
to the teaching of mathematics; others will be of special application to the 
needs of today's, and tomorrow's, students and will be, in that sense, new. 
The principles will be illustrated by examples in order to avoid the sort of 
frustrating vagueness which often accompanies even the most respectable 
recommendations (thus, "problem solving [should] be the focus of school 
mathematics in the 1980's" [1]). 

However, before embarking on a talk intended as a contribution to the 
discussion of how to achieve a successful mathematical education, it would 
be as well to make plain what are our criteria of success. Indeed, it would 
be as well to be clear what we understand by successful education, since we 
would then be able to derive the indicated criteria by specialization. 

Let us begin by agreeing that a successful education is one which con
duces to a successful life. However, there is a popular, persistent and paltry 
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view of the successful life which we must immediately repudiate. This is the 
view that success in life is measured by affluence and is manifested by power 
and influence over others. It is very relevant to my theme to recall that, when 
Queen Elizabeth was recently the guest of President and Mrs Reagan in Cal
ifornia, the "successes" who were gathered together to greet her were not 
Nobel prize-winners, of which California may boast remarkably many, but 
stars of screen and television. As the London Times described the occasion, 
"Queen dines with celluloid royalty". It was apparently assumed that the 
company of Frank Sinatra, embodying the concept of success against which I 
am inveighing, would be obviously preferable to that of, say, Linus Pauling. 

The Reaganist-Sinatrist view of success contributes a real threat to the 
integrity of education; for education should certainly never be expected to 
conduce to that kind of success. At worst, this view leads to a complete 
distortion of the educational process; at the very least, it allies education far 
too closely to specific career objectives, an alliance which unfortunately has 
the support of many parents naturally anxious for their children's success. 

We would replace the view we are rejecting by one which emphasizes 
the kind of activity in which an individual indulges, and the motivation 
for so indulging, rather than his, or her, accomplishment in that acitivity. 
The realization of the individual's potential is surely a mark of success in 
life. Contrasting our view with that which we are attacking, we should seek 
power over ourselves, not over other people; we should seek the knowledge 
and understanding to give us power and control over things, not people. We 
should want to be rich but in spiritual rather than material resources. We 
should want to influence people, but by the persuasive force of our argument 
and example, and not by the pressure we can exert by our control of their 
lives and, even more sinisterly, of their thoughts. 

It is absolutely obvious that education can, and should, lead to a suc
cessful life, so defined. Moreover, mathematical education is a particularly 
significant component of such an education. This is true for two reasons. On 
the one hand, I would state dogmatically that mathematics is one of the hu
man activities, like art, literature, music, or the making of good shoes, which 
is intrinsically worthwhile. On the other hand, mathematics is a key element 
in science and technology and thus vital to the understanding, control and 
development of the resources of the world around us. These two aspects 
of mathematics, often referred to as pure mathematics and applied mathe
matics, should both be present in a well-balanced, successful mathematics 
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education. 

Let me end these introductory remarks by referring to a particular aspect 
of the understanding and control to which mathematics can contribute so 
much. Through our education we hope to gain knowledge. We can only be 
said to really know something if we know that we know it. A sound education 
should enable us to distinguish between what we know and what we do not 
know; and it is a deplorable fact that so many people today, including large 
numbers of pseudosuccesses but also, let us admit, many members of our own 
academic community, seem not to be able to make the distinction. It is of the 
essence of genuine mathematical education that it leads to understanding and 
skill; short cuts to the acquisition of skill, without understanding, are often 
favored by self-confident pundits of mathematical education, and the results 
of taking such short cuts are singularly unfortunate for the young traveller. 
The victims, even if "successful", are left precisely in the position of not 
knowing mathematics and not knowing they know no mathematics. For 
most, however, the skill evaporates or, if it does not, it becomes out-dated. 
No real ability to apply quantitative reasoning to a changing world has been 
learned, and the most frequent and natural result is the behaviour pattern 
known as "mathematics avoidance". Thus does it transpire that so many 
prominent citizens exhibit both mathematics avoidance and unawareness of 
ignorance. 

This then is my case for the vital role of a sound mathematical education, 
and from these speculations I derive my criteria of success. 

Trends in mathematics today 

The three principal broad trends in mathematics today I would characterize 
as (i) variety of applications, (ii) a new unity in the mathematical sciences, 
and (iii) the ubiquitous presence of the computer. Of course, these are not in
dependent phenomena, indeed they are strongly interrelated, but it is easiest 
to discuss them individually. 

The increased variety of application shows itself in two ways. On the one 
hand, areas of science, hitherto remote from or even immune to mathematics, 
have become "infected". This is conspicuously true of the social sciences, but 
is also a feature of present-day theoretical biology. It is noteworthy that it 
is not only statistics and probability which are now applied to the social 
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sciences and biology; we are seeing the application of fairly sophisticated 
areas of real analysis, linear algebra and combinatorics, to name but three 
parts of mathematics involved in this process. 

But another contributing factor to the increased variety of applications is 
the conspicuous fact that areas of mathematics, hitherto regarded as impreg
nably pure, are now being applied. Algebraic geometry is being applied to 
control theory and the study of large-scale systems; combinatorics and graph 
theory are applied to economics; the theory of fibre bundles is applied to 
physics; algebraic invariant theory is applied to the study of error-correcting 
codes. Thus the distinction between pure and applied mathematics is seen 
now not to be based on content but on the attitude and motivation of the 
mathematician. No longer can it be argued that certain mathematical top
ics can safely be neglected by the student contemplating a career applying 
mathematics. I would go further and argue that there should not be a sharp 
distinction between the methods of pure and applied mathematics. Certainly 
such a distinction should not consist of a greater attention to rigour in the 
pure community, for the applied mathematician needs to understand very 
well the domain of validity of the methods being employed, and to be able 
to analyse how stable the results are and the extent to which the methods 
may be modified to suit new situations. 

These last points gain further significance if one looks more carefully 
at what one means by "applying mathematics". Nobody would seriously 
suggest that a piece of mathematics be stigmatized as inapplicable just be
cause it happens not yet to have been applied. Thus a fairer distinction than 
that between "pure" and "applied" mathematics, would seem to be one be
tween "inapplicable" and "applicable" mathematics, and our earlier remarks 
suggest we should take the experimental view that the intersection of inappli
cable mathematics and good mathematics is probably empty. However, this 
view comes close to being a subjective certainty if one understands that ap
plying mathematics is very often not a single-stage process. We wish to study 
a "real world" problem; we form a scientific model of the problem and then 
construct a mathematical model to reason about the scientific or conceptual 
model (see [2]). However, to reason within the mathematical model, we may 
well feel compelled to construct a new mathematical model which embeds 
our original model in a more abstract conceptual context; for example, we 
may study a particular partial differential equation by lJringing to bear a 
general theory of elliptic differential operators. Now the process of modeling 
a mathematical situation is a "purely" mathematical process, but it is appar-

12 



ently not confined to pure mathematics! Indeed, it may well be empirically 
true that it is more often found in the study of applied problems than in 
research in pure mathematics. Thus we see, first, that the concept of appli
cable mathematics needs to be broad enough to include parts of mathematics 
applicable to some area of mathematics which has already been applied; and, 
second, that the methods of pure and applied mathematics have much more 
in common than would be supposed by anyone listening to some of their 
more vociferous advocates. For our purposes now, the lessons for mathe
matics education to be drawn from looking at this trend in mathematics are 
twofold; first, the distinction between pure and applied mathematics should 
not be emphasized in the teaching of mathematics, and, second, opportuni
ties to present applications should be taken wherever appropriate within the 
mathematics curriculum. 

The second trend we have identified is that of a new unification of math
ematics. This is discussed at some length in [3], so we will not go into great 
detail here. We would only wish to add to the discussion in [3] the remark 
that this new unification is clearly discernible within mathematical research 
itself. Up to ten years ago the most characteristic feature of this research was 
the "vertical" development of autonomous disciplines, some of which were of 
very recent origin. Thus the community of mathematicians was partitioned 
into subcommunities united by a common and rather exclusive interest in a 
fairly narrow area of mathematics (algebraic geometry, algebraic topology, 
homological algebra, category theory, commutative ring theory, real analysis, 
complex analysis, summability theory, set theory, etc., etc.). Indeed, some 
would argue that no real community of mathematicians existed, since special
ists in distinct fields were barely able to communicate with each other. I do 
not impute any fault to the system which prevailed in this period of remark
ably vigorous mathematical growth - indeed, I believe it was historically 
inevitable and thus "correct" - but it does appear that these autonomous 
disciplines are now being linked together in such a way that mathematics 
is being reunified. We may think of this development as "horizontal", as 
opposed to "vertical" growth. Examples are the use of commutative ring 
theory in combinatorics, the use of cohomology theory in abstract algebra, 
algebraic geometry, fuctional analysis and partial differential equations, and 
the use of Lie group theory in many mathematical disciplines, in relativity 
theory and in invariant gauge theory. 

I believe that the appropriate education of a contemporary mathemati
cian must be broad as well as deep, and that the lesson to be drawn from the 
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trend toward a new unification of mathematics must involve a similar princi
ple. We may so formulate it: we must break down artificial barriers between 
mathematical topics throughout the student's mathematical education. 

The third trend to which I have drawn attention is that of the general 
availability of the computer and its role in actually changing the face of 
mathematics. The computer may eventually take over our lives; this would 
be a disaster. Let us assume this disaster can be avoided; in fact, let us 
assume further, for the purposes of this discussion at any rate, that the 
computer plays an entirely constructive role in our lives and in the evolution 
of our mathematics. What will then be the effects? 

The computer is changing mathematics by bringing certain topics into 
greater prominence - it is even causing mathematicians to create new ar
eas of mathematics (the theory of computational complexity, the theory of 
automata, mathematical cryptology). At the same time it is relieving us 
of certain tedious aspects of traditional mathematical activity which it exe
cutes faster and more accurately than we can. It makes it possible rapidly 
and painlessly to carry out numerical work, so that we may accompany our 
analysis of a given problem with the actual calculation of numerical exam
ples. However, when we use the computer, we must be aware of certain risks 
to the validity of the solution obtained due to such features as structural 
instability of round-off error. The computer is especially adept at solving 
problems involving iterated procedures, so that the method of successive ap
proximation (iteration theory) takes on a new prominence. On the other 
hand, the computer renders obsolete certain mathematical techniques which 
have hitherto been prominent in the curriculum - a sufficient example is 
furnished by the study of techniques of integration. 

There is a great debate raging as to the impact which the computer 
should have on the curriculum (see, for example, [6]). Without taking sides 
in this debate, it is plain that there should be a noticeable impact, and that 
every topic must be examined to determine its likely usefulness in a computer 
age. It is also plain that no curriculum today can be regarded as complete 
unless it prepares the student to use the computer and to understand its 
mode of operation. We should include in this understanding a realization of 
its scope and its limitations; and we should abandon the fatuous idea, today 
so prevalent in educational theory and practice, that the principal purpose 
of mathematical education is to enable the child to become an effective com
puter even if deprived of all mechanical aids! 
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Let me elaborate this point with the following table of comparisons. On 
the left I list human attributes and on the right I list the contrasting at
tributes of a computer when used as a calculating engine. I stress this point 
because I must emphasize that I am not here thinking of the computer as 
a research tool in the study of artificial intelligence. I should also add that 
I am talking of contemporary human beings and contemporary computers. 
Computers evolve very much faster than human beings so that their charac
teristics may well undergo dramatic change in the span of a human lifetime. 
With these caveats, let me display the table. 

HUMANS 

Compute slowly and inaccurately. 

Get distracted. 

Are interested in many things 
at the same time. 

Sometimes give up. 

Are often intelligent 
and understanding. 

Have ideas and imagination, 
make inspired guesses, think. 

COMPUTERS 

Compute fast and accurately. 

Are remorseless, relentless 
and dedicated. 

Always concentrate and 
cannot be diverted. 

Are incurably stubborn. 

Are usually pedantic 
and rather stupid. 

Can execute "IF .. . ELSE" 
instructions. 

Human and computer attributes 

It is an irony that we seem to teach mathematics as if our objective were 
to replace each human attribute in the child by the corresponding computer 
attribute - and this is a society nominally dedicated to the development 
of each human being's individual capacities. Let us agree to leave to the 
computer what the computer does best and to design the teaching of math
ematics as a generally human activity. This apparently obvious principle 
has remarkably significant consequences for the design of the curriculum, the 
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topic to which we now turn. 

The secondary school curriculum 

Let us organize this discussion around the "In and Out" principle. That is, 
we will list the topics which should be "In" or strongly emphasized, and the 
topics which should be "Out" or very much underplayed. We will also be 
concerned to recommend or castigate, as the case may be, certain teaching 
strategies and styles. We do not claim that all our recommendations are 
strictly contemporary, in the sense that they are responses to the current 
prevailing changes in mathematics and its uses; some, in particular those 
devoted to questions of teaching practice, are of a lasting nature and should, 
in my judgment, have been adopted long since. 

We will present a list of "In" and "Out" items, followed by commentary. 
We begin with the "Out" category, since this is more likely to claim gen
eral attention; and within the "Out" category we first consider pedagogical 
techniques. 

OUT(Secondary Level) 

1. TEACHING STRATEGIES 
Authoritarianism. 
Orthodoxy. 
Pointlessness. 
Pie-in-the-sky motivation. 

2. TOPICS 
Tedious hand calculations. 
Complicated trigonometry. 
Learning geometrical proofs. 
Artificial "simplifications". 
Logarithms as calculating devices. 
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Commentary 

There should be no need to say anything further about the evils of authoritar
ianism and pointlessness in presenting mathematics. They disfigure so many 
teaching situations and are responsible for the common negative attitudes to
wards mathematics which regard it as unpleasant and useless. By orthodoxy 
we intend the magisterial attitude which regards one "answer" as correct and 
all others as (equally) wrong. Such an attitude has been particularly harmful 
in the teaching of geometry. Instead of being a wonderful source of ideas and 
of questions, geometry must appear to the student required to set down a 
proof according to rigid and immutable rules as a strange sort of theology, 
with prescribed responses to virtually meaningless propositions. 

Pointlessness means unmotivated mathematical process. By "pie-in-the
sky" motivation we refer to a form of pseudomotivation in which the student 
is assured that, at some unspecified future date, it will become clear why the 
current piece of mathematics warrants learning. Thus we find much algebra 
done because it will be useful in the future in studying the differential and 
integral calculus - just as much strange arithmetic done at the elementary 
level can only be justified by the student's subsequent exposure to algebra. 
One might perhaps also include here the habit of presenting to the student 
applications of the mathematics being learnt which could only interest the 
student at a later level of maturity; obviously, if an application is to mo
tivate a student's study of a mathematical topic, the application must be 
interesting. 

With regard to the expendable topics, tedious hand calculations have 
obviously been rendered obsolete by the availability of hand-calculators and 
minicomputers. To retain these appalling travesties of mathematics in the 
curriculum can be explained only by inertia or sadism on the part of the 
teacher and curriculum planner. It is important to retain the trigonometric 
functions (especially as functions of real variables) and their basic identitites, 
but complicated identities should be eliminated and tedious calculations re
duced to a minimum. Understanding geometric proofs is very important; 
inventing one's own is a splendid experience for the student; but memorizing 
proofs is a suitable occupation only for one contemplating a monastic life 
of extreme asceticism. Much time is currently taken up with the student 
processing a mathematical expression which came from nowhere, involving 
a combination of parentheses, negatives, and fractions, and reducing the ex
pression to one more socially acceptable. This is absurd; but, of course, 
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the student must learn how to substitute numerical values for the variables 
appearing in a natural mathematical expression. 

Let us now turn to the positive side. Since, as our first recommendation 
below indicates, we are proposing an integrated approach to the curriculum, 
the topics we list are rather of the form of modules than full-blown courses. 

IN (Secondary Level) 

1. TEACHING STRATEGIES 
An integrated approach to the curriculum, stressing the 

interdependence of the various parts of mathematics. 
Simple application. 
Historical references. 
Flexibility. 
Exploitation of computing availability. 

2. TOPICS 
Geometry and algebra (e.g. linear and quadratic 

functions, equations and inequalities). 
Probability and statistics. 
Approximation and estimation, scientific notation. 
Iterative procedures, successive approximation. 
Rational numbers, ratios and rates. 
Arithmetic mean and geometric mean (and harmonic mean). 
Elementary number theory. 
Paradoxes. 

Commentary 

With respect to teaching strategies, our most significant recommendation is 
the first. (I do not say it is the most important, but it is the most char
acteristic of the whole tenor of this article.) Mathematics is a unity, albeit 
a remarkably subtle one, and we must teach mathematics to stress this. It 
is not true, as some claim, that all good mathematics - or even all ap
plicable mathematics - has arisen in response to the stimulus of problems 
coming from outside mathematics; but it is true that all good mathematics 

18 



has arisen from the then existing mathematics, frequently, of course, under 
the impulse of a "real world" problem. Thus mathematics is an interrelated 
and highly articulated discipline, and we do violence to its true nature by 
separating it- for teaching or research purposes- into artificial watertight 
compartments. In particular, geometry plays a special role in the history 
of human thought. It represents man's (and woman's!) primary attempt to 
reduce the complexity of our three-dimensional ambience to one-dimensional 
language. It thus reflects our natural interest in the world around us, and 
its very existence testifies to our curiosity and our search for patterns and 
order in apparent chaos. We conclude that geometry is a natural conceptual 
framework for the formulation of questions and the presentation of results. 
It is not, however, in itself a method of answering questions and achieving 
results. This role is preeminently played by algebra. If geometry is a source 
of questions and algebra a means of answering them, it is plainly ridiculous 
to separate them. How many students have suffered through algebra courses, 
learning methods of solution of problems coming from nowhere? The result 
of such compartmentalized instruction is, frequently and reasonably, a sense 
of futility and of pointlessness of mathematics itself. 

The good sense of including applications and, where appropriate, refer
nces to the history of mathematics is surely self-evident. Both these rec
ommendations could be included in a broader interpretation of the thrust 
toward an integrated curriculum. The qualification that the applications 
should be simple is intended to convey both that the applications should not 
involve sophisticated scientific ideas not available to the students - this is a 
frequent defect of traditional "applied mathematics" - and that the applica
tions should be of actual interest to the students, and not merely important. 
The notion of flexibility with regard to the curriculum is inherent in an inte
grated approach; it is obviously inherent in the concept of good teaching. Let 
us admit, however, that it can only be achieved if the teacher is confident 
in his, or her, mastery of the mathematical content. Finally, we stress as 
a teaching strategy the use of the hand-calculator, the minicomputer and, 
where appropriate, the computer, not only to avoid tedious calculations but 
also in very positive ways. Certainly we include the opportunity thus pro
vided for doing actual numerical examples with real-life data, and the need 
to re-examine the emphasis we give to various topics in the light of comput
ing availability. We mention here the matter of computer-aided instruction, 
but we believe that the advantages of this use of the computer depend very 
much on local circumstances, and are more likely to arise at the elementary 

19 



level. 

With regard to topics, we have already spoken about the link between 
geometry and algebra, a topic quite large enough to merit a separate ar
ticle. The next two items must be in the curriculum simply because no 
member of a modern industrialized society can afford to be ignorant of these 
subjects, which constitute our principal day-to-day means of bringing quan
titative reasoning to bear on the world around us. We point out, in addition, 
that approximation and estimation techniques are essential for checking and 
interpreting machine calculations. 

It is my belief that much less attention should be paid to general results 
on the convergence of sequences and series, and much more on questions 
related to the rapidity of convergence and the stability of the limit. This 
applies even more to the tertiary level. However, at the secondary level, we 
should be emphasizing iterative procedures since these are so well adapted 
to computer programming. Perhaps the most important result - full of 
interesting applications- is that a sequence {xn}, satisfying Xn+l = axn +b, 
converges to b/(1- a) if lal < 1 and diverges if lal > 1. (For one application 
see [4].) It is probable that the whole notion of proof and definition by 
induction should be recast in "machine" language for today's student. 

The next recommendation is integrative in nature, yet it refers to a 
change which is long overdue. Fractions start life as parts of wholes and, at 
a certain stage, come to represent amounts or measurements and therefore 
numbers. However, they are not themselves numbers; the numbers they 
represent are rational numbers. Of course, one comes to speak of them as 
numbers, but this should only happen when one has earned the right to be 
sloppy by understanding the precise nature of fractions (see [5]). If rational 
numbers are explicitly introduced, then it becomes unnecessary to treat ratios 
as new and distinct quantities. Rates also may then be understood in the 
context of ratios and dimensional analysis. However, there is a further aspect 
of the notion of rate which it is important to include at the secondary level. 
I refer to average rate of change and, in particular, average speed. The 
principles of grammatical construction suggest that, in order to understand 
the composite term "average speed" one must understand the constituent 
terms "average" and "speed". This is quite false; the term "average speed" 
is much more elementary than either of the terms "average", "speed", and is 
not, in fact, their composite. A discussion of the abstractions "average" and 
"speed" at the secondary level would be valuable in itself and an excellent 
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preparation for the differential and integral calculus. 

Related to the notion of average is, of course, that of arithmetic mean. 
I strongly urge that there be, at the secondary level, a very full discussion of 
the arithmetic, geometric and harmonic means and of the relations between 
them. The fact that the arithmetic mean of the non-negative quantities a 1 , 

~, ... , an is never less than their geometric mean and that equality occurs 
precisely when a 1 = a2 = ... = an, may be used to obtain many maximum 
or minimum results which are traditionally treated as applications of the 
differential calculus of several variables - a point made very effectively in a 
recent book by Ivan Niven. 

Traditionally, Euclidean geometry has been held to justify its place in 
the secondary curriculum on the grounds that it teaches the student logical 
reasoning. This may have been true in some Platonic academy. What we can 
observe empirically today is that it survives in our curriculum in virtually 
total isolation from the rest of mathematics; that it is not pursued at the 
university; and that it instills, in all but the very few, not a flair for logical 
reasoning but distaste for geometry, a feeling of pointlessness, and a famil
iarity with failure. Again, it would take a separate article (at the very least) 
to do justice to the intricate question of the role of synthetic geometry in 
the curriculum. Here, I wish to propose that its hypothetical role can be as
sumed by a study of elementary number theory, where the axiomatic system 
is so much less complex than that of plane Euclidean geometry. Moreover, 
the integers are very "real" to the student and, potentially, fascinating. Re
sults can be obtained by disciplined thought, in a few lines, that no high
speed computer could obtain, without the benefit of human analysis, in the 
student's lifetime. 

( 6) 12 
e.g. 710 1 mod 13. 

Of course, logical reasoning should also enter into other parts of the cur
riculum; of course, too, synthetic proofs of geometrical propositions should 
continue to play a part in the teaching of geometry, but not at the expense 
of the principal role of geometry as a source of intuition and inspiration and 
as a means of interpreting and understanding algebraic expressions. 

My final recommendation is also directed to the need for providing stim
ulus for thought. Here I understand, by a paradox, a result which conflicts 
with conventional thinking, not a result which is self-contradictory. A conse
quence of an effective mathematical education should be the inculcation of a 
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healthy scepticism which protects the individual against the blandishments 
of self-serving propagandists, be they purveyors of perfumes, toothpastes, 
or politics. In this sense a consideration of paradoxes fully deserves to be 
classified as applicable mathematics! An example of a paradox would be the 
following: Students A and B must submit to twenty tests during the school 
term. Up to half term, student A had submitted to twelve tests and passed 
three, while student B had submitted to six tests and passed one. Thus, for 
the first half of the term, A's average was superior to B's. In the second half 
of the term, A passed all the remaining eight tests, while B passed twelve of 
the remaining fourteen. Thus, for the second half of the term, A's average 
was also superior to B's. Over the whole term, A passed eleven tests out of 
twenty, while B passed thirteen tests out of twenty, giving B a substantially 
better average than A. 

The elementary school curriculum 

This article (like the talk itself!) is already inordinately long. Thus I will 
permit myself to be much briefer with my commentary than in the discussion 
of the secondary curriculum, believing that the rationale for my recommen
dations will be clear in the light of the preceding discussion and the reader's 
own experience. I will again organize the discussion on the basis of the "In" 
and "Out" format beginning with the "Out" list. 

OUT (Elementary Level) 

1. TEACHING STRATEGIES 
Just as for the secondary level. 
Emphasis on accuracy. 

2. TOPICS 
Emphasis on hand algorithms. 
Emphasis on addition, subtraction, division 

and the order relation with fractions. 
Improper work with decimals. 

Commentary 

The remarks about teaching strategies are, if anything, even more important 
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at the elementary level than the secondary level. For the damage done by 
the adoption of objectionable teaching strategies at the elementary level is 
usually ineradicable, and creates the mass phenomenon of "math avoidance" 
so conspicuous in present-day society. On the other hand, one might opti
mistically hope that the student who has received an enlightened elementary 
mathematical education and has an understanding and an experience of what 
mathematics can and should be like may be better able to survive the rigors 
of a traditional secondary instruction if unfortunate enough to be called upon 
to do so, and realize that it is not the bizarre nature of mathematics itself 
which is responsible for his, or her, alienation from the subject as taught. 

With regard to the topics, I draw attention to the primacy of multi
plication as the fundamental arithmetical operation with fractions. For the 
notion of fractions is embedded in our language and thus leads naturally to 
that of a fraction of a fraction. The arithmetical operation which we per
form to calculate, say, 3/5 of 1/4 we define to be the product of the fractions 
concerned. Some work should be done with the addition of elementary frac
tions, but only with the beginning of a fairly systematic study of elementary 
probability theory should addition be given much prominence. Incidentally, 
it is worth remarking that in the latter context, we generally have to add 
fractions which have the same denominator - unless we have been condi
tioned by prior training mindlessly to reduce any fraction which comes into 
our hands. 

Improper work with decimals is of two kinds. First, I deplore prob
lems of the kind 13.7 + 6.83, which invite error by misalignment. Decimals 
represent measurements; if two measurements are to be added, they must 
be in the same units, and the two measurements would have been made to 
the same degree of accuracy. Thus the proper problem would have been 
13.70 + 6.83, and no difficulty would have been encountered. Second, I de
plore problems of the kind 16.1 x 3.7, where the intended answer is 59.57. 
In no reasonable circumstances can an answer to two places of decimals be 
justified; indeed all one can say is that the answer should be between 58.58 
and 60.56. Such spurious accuracy is misleading and counterproductive. It is 
probably encouraged by the usual algorithm given for multiplying decimals 
(in particular, for locating the decimal point by counting digits to the right 
of the decimal point); it would be far better to place the decimal point by 
estimation. 

Again, we return to the postitive side. 
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IN (Elementary Level) 

1. TEACHING STRATEGIES 

As for the secondary level. 
Employment of confident, capable and enthusiastic teachers. 

2. TOPICS 

Numbers for counting and measurement- the two arithmetics. 
Division as a mathematical model in various contexts. 
Approximation and estimation. 
Averages and statistics. 
Practical, informal geometry. 
Geometry and mensuration; 

geometry and probability (Monte Carlo method). 
Geometry and simple equations and inequalities. 
Negative numbers in measurement, vector addition. 
Fractions and elementary probability theory. 
Notion of finite algorithm and recursive definition (informal). 

Commentary 

Some may object to our inclusion of the teacher requirement among the 
"teaching strategies" - others may perhaps object to its omission at the 
secondary level! We find it appropriate, indeed necessary, to include this 
desideratum, not only to stress how absolutely essential the good teacher is to 
success at the elementary level, but also to indicate our disagreement with the 
proposition, often propounded today, that it is possible, e.g. with computer
aided instruction, to design a "teacher-proof" curriculum. The good, capable 
teacher can never be replaced; unfortunately, certain certification procedures 
in the United States do not reflect the prime importance of mathematical 
competence in the armoury of the good elementary teacher. 

We close with a few brief remarks on the topics listed. It is an extraor
dinary triumph of human thought that the same system can be used for 
counting and measurement - but the two arithmetics diverge in essential 
respects- of course, in many problems both arithmetics a:e involved. Mea
surements are inherently imprecise, so that the arithmetic of measurement is 
the arithmetic of approximation. Yes, 2 + 2 = 4 in counting arithmetic; but 
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2 + 2 = 4 with probability of 3/4 if we are dealing with measurement.* 

The separation of division from its context is an appalling feature of 
traditional drill arithmetic. This topic has been discussed elsewhere [7]; here 
let it suffice that the solution to the division problem 100 + 12 should depend 
on the context of the problem and not the grade of the student. 

Geometry should be a thread running through the student's entire math
ematical education - we have stressed this at the secondary level. Here we 
show how geometry and graphing can and should be linked with key parts 
of elementary mathematics. We recommend plenty of experience with actual 
materials (e.g., folding strips of paper to make regular polygons and poly
hedra), but very little in the way of geometric proof. Hence we recommend 
practical, informal geometry, within an integrated curriculum. 

We claim it is easy and natural to introduce negative numbers, and to 
teach the addition and subtraction of integers - motivation abounds. The 
multiplication of negative numbers (like the addition of fractions) can and 
should be postponed. 

As we have said, multiplication is the primary arithmetical operation 
on fractions. The other operations should be dealt with in context - and 
probability theory provides an excellent context for the addition of fractions. 
It is however, not legitimate to drag a context in to give apparent justification 
for the inclusion, already decided on, of a given topic. 

The idea of a finite algorithm, and that of a recursive definition, are 
central to computer programming. Such ideas will need to be clarified in the 
mathematics classroom, since nowhere else in the school will the responsibil
ity be taken. However, it is reasonable to hope that to days's students will 
have become familiar with the conceptual aspects of the computer in their 
daily lives - unless commercial interests succeed in presenting the micro
computer as primarily the source of arcade games. 

But this is just one aspect of the general malaise of our contemporary 
society, and deserves a much more thorough treatment than we can give it 
here. It is time to rest my case. 

* If AB=2 ins . , and BC=2 ins . , each to the nearest inch, then A C =4 ins . to the nearest 

inch with a probability of 3/4 . 
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