1. \[x = \frac{\log_2 3 \log_2 4}{\log_2 2 \log_2 3} \ldots \frac{\log_2 8}{\log_2 2} = \frac{\log_2 8}{\log_2 2} = 3. \]

2. Label the chessboard as shown. Then \(B \) has 6 touching squares, so \(B \) must have 1 or 8. Similarly for \(C \). Thus, either \(B = 1 \) and \(C = 8 \), or \(B = 8 \) and \(C = 1 \). Also, \(B = 1 \) implies \(D = 2 \). Similarly for \(A \). Therefore, \(B \) determines \(A \), \(C \), and \(D \). The numbers left are 3, 4, 5, 6. \(E \) and \(F \) touch \(A \), so two of these numbers cannot be in \(E \) or \(F \). The only choice left is between \(G \) and \(H \). This choice determines \(E \), \(F \), \(G \) and \(H \). Since there are two choices for \(B \), and for each of these, there are two choices for \(G \), there are altogether four possible assignments.

3. \(x^{256} - 256^{32} = x^{256} - 2^{256} = 0 \) has only two real roots: 2 and -2, so \(2^2 + (-2)^2 = 8 \).

4.
\[
\sum_{n=0}^{\infty} \frac{2^n}{2^n} = 2 \sum_{n=1}^{\infty} \frac{n}{2^n} = 2 \sum_{i=1}^{\infty} \frac{1}{2^n} = 2 \sum_{i=1}^{\infty} \frac{1}{2^i} \sum_{n=i}^{\infty} \frac{1}{2^n} = 2 \sum_{i=1}^{\infty} \frac{1}{2^i} \sum_{n=i}^{\infty} \frac{1}{2^n} = 2 \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{1}{1 - \frac{1}{2}} = 4 \sum_{i=1}^{\infty} \frac{1}{2^i} = 4.
\]

5. \(x = \sqrt{5} + \sqrt{3} + x \Rightarrow x^2 - 5 = \sqrt{3} + x \Rightarrow x^4 - 10x^2 - x + 22 = 0 \Rightarrow (x+2)(x^3 - 2x^2 - 6x + 11) = 0 \). Let \(f(x) = x^3 - 2x^2 - 6x + 11 \). Then, \(f(x) < 0 \) for large negative \(x \), \(f(0) > 0 \), \(f(2) < 0 \), \(f(3) > 0 \); these imply there are 3 real roots, two of which are less than 2. But \(x > \sqrt{5} > 2 \), so \(2 < x < 3 \).
6. \(\left(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}} \right)^2 = 2 \), and \(3 - 2\sqrt{2} = (\sqrt{2} - 1)^2 \),
so we have \(\sqrt{2} - (\sqrt{2} - 1) = 1 \).

7. Let \(b \) be the length of \(AC \) and \(c \) the length of \(AB \). Then \(b + c = 8 + \sqrt{3} - BC = 8 + \sqrt{3} - 4 = 4 + \sqrt{3} \) and \(b^2 + c^2 = BC^2 = 16 \). Since \((b+c)^2 = 19 + 8\sqrt{3} \), we get \(2bc = 3 + 8\sqrt{3} \). The area is \(\frac{1}{2}bc = \frac{1}{4}(3 + 8\sqrt{3}) \).

8. Let \(O \) be the centre, \(\angle AOB = x^\circ \), and \(\angle AOD = y^\circ \). Then \(3x + y = 360 \) and \(40 + \frac{1}{2}y = \frac{1}{2}x \). Solving, we get \(x = 110, y = 30 \), so \(\angle ACD = 15^\circ \).

9. \[\left(\begin{array}{c} 7 \\ 2 \end{array} \right) \frac{10 \cdot 8}{2!} \cdot \frac{40}{143} \]

10. Let \(W, L, D \) represent respectively Amy winning, losing, and drawing a game. The sequences that give Amy a higher total are permutations of \((W,D,D,D), (W,W,L,D), (W,W,D,D), (W,W,W,L), (W,W,W,D) \) and \((W,W,W,W) \). The total probability is

\[\left(\begin{array}{c} 4 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 \\ 6 \end{array} \right)^3 + \left(\begin{array}{c} 4 \\ 2 \end{array} \right) \left(\begin{array}{c} 2 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 6 \end{array} \right) + \left(\begin{array}{c} 4 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 \\ 6 \end{array} \right)^2 \\
\left(\begin{array}{c} 4 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 \\ 3 \end{array} \right) + \left(\begin{array}{c} 4 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 \\ 6 \end{array} \right) + \left(\begin{array}{c} 1 \\ 2 \end{array} \right)^4 = \frac{229}{432} \]
1. Suppose the claim is true.

\[
\frac{1}{a} + \frac{1}{d} = \frac{1}{b} + \frac{1}{c} \Rightarrow \frac{1}{a} - \frac{1}{b} = \frac{1}{c} - \frac{1}{d} \Rightarrow cd(b - a) = ab(d - c),
\]

so b divides cd(b - a). Since b is a prime, either b divides cd or b divides b - a. But b, c, and d are unequal primes, so b does not divide cd; also, b ≠ a, so b does not divide b - a. These contradict the previous statement, so the claim is false.

2. Suppose \(\frac{p}{q} \) is a rational root, where p, q are integers and \(\gcd(p, q) = 1 \). Then

\[
a_0 q^n + a_1 q^{n-1} p + \cdots + a_n p^n = 0. \tag{1}
\]

Hence p divides \(a_0 \) and q divides \(a_n \), so both p and q are odd. It follows that \(a_k q^{n-k} p^k \) is odd if and only if \(a_k \) is odd. LHS of (1) is even, so \(a_0 + a_1 + \cdots + a_n \) is even. This contradicts the fact that \(f(1) \) is odd.

3. There are 8.7.6 ways to sit in a circle. The first person can sit anywhere. The other 3 permute themselves clockwise in 6 ways, with one chair between every two persons. The extra chair can go in 4 possible positions, so the total number of ways is 4.6 = 24. The probability is \(\frac{24}{8.7.6} = \frac{1}{14} \).

4. We have \((\cos A + \cos B + \cos C)^2 = 0 \), so

\[
\cos^2 A + \cos^2 B + \cos^2 C + 2(\cos A \cos B + \cos B \cos C + \cos C \cos A) = 0. \tag{2}
\]

However,

\[
2(\cos A \cos B + \cos B \cos C + \cos C \cos A) = \cos(A + B) + \cos(A - B) + \cos(B + C) + \cos(B - C) + \cos(C + A) + \cos(C - A). \tag{3}
\]

Let \(A + B + C = D \). Then

\[
\cos(A + B) + \cos(B + C) + \cos(C + A) = \cos(D - C) + \cos(D - A) + \cos(D - B) = \cos D(\cos C + \cos A + \cos B) + \sin D(\sin C + \sin A + \sin B) = 0.
\]
Moreover, \((\sin A + \sin B)^2 = (-\sin C)^2 = \sin^2 C\) and \((\cos A + \cos B)^2 = (-\cos C)^2 = \cos^2 C\), from which we get \(2 + 2\cos(A - B) = 1\), i.e., \(\cos(A - B) = -\frac{1}{2}\). Similarly, \(\cos(B - C) = \cos(C - A) = -\frac{1}{2}\). Combining (2), (3) and these, we get \(\cos^2 A + \cos^2 B + \cos^2 C = \frac{3}{2}\).

5. It is not difficult to see that the position of \(R\) which yields minimum \(PR + QR\) must be on \(AB\), \(BC\) or \(CD\).

- **\(R\) on \(AB\).**
 \[PR + RQ = \sqrt{\left(\frac{3}{4}\right)^2 + \left(\frac{\sqrt{3}}{4} + \frac{2\sqrt{3}}{3}\right)^2} = \sqrt{\frac{37}{12}}\]

- **\(R\) on \(BC\).**
 \[PR + RQ = \sqrt{1^2 + \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{3}\right)^2} = \sqrt{\frac{37}{12}}\]

- **\(R\) on \(CD\).**
 \[PR + QR = \sqrt{\left(\frac{1}{4}\right)^2 + \left(\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{6}\right)^2} = \sqrt{\frac{31}{12}}\]

The minimum value is \(\sqrt{\frac{31}{12}}\).