
1. Introduction 

Tests and Their Power 

Ling Kiong Doong 
Department of Mathematics 

National University of Singapore 

In Statistical Inference, the two main areas of study are estimation 
and testing of hypotheses. In this workshop, we confine ourselves to the 
~rea of testing of hypotheses. 

Basic concepts needed in testing of hypotheses will be introduced in 
the next section. Section 3 considers the problems of testing a simple null 
hypothesis against a simple alternative hypothesis. The well-known Ney­
man Pearson Lemma will also be discussed. Applications of the Neyman 
Pearson Lemma to some test problems which involve composite hypothe­
ses are given in Section 4. Finally, in Section 5, we introduce the likelihood 
ratio method of finding a test. 

2. Basic Concepts 

A standard form of problems in testing of hypotheses is 

Test a null hypothesis, usually denoted by H0 , against an alternative 
hypothesis, usually denoted by H 1 , 

where H 0 and -H 1 are hypotheses concerning the distribution of a random 
variable X. 

A hypothesis is said to be simple if it completely determines the dis­
tribution of X. Hypotheses which are not simple are called composite 
hypotheses. For example, if X has a normal distribution with mean p, and 
variable u 2

, i.e., X"" N(p,, a 2
), then the hypothesis that p, = 0 and a 2 = 1 

is simple, while the hypothesis that p, = 5 is composite. 
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In many practical situation, the probability density function (pdf) of 
a random variable X is partly known in form, but involves some unknown 
characteristics or parameters. A hypothesis which is concerned with the 
parameters of the distribution of X is referred to as a parametric hypoth­
esis. Hypotheses that are not parametric are said to be non-parametric . . 
For example, the two hypotheses given in the preceding paragraph are 
parametric. The hypothesis that X is normally distributed and the hy­
pothesis that X has a distribution which is symmetric about the origin 
are examples of non-parametric hypotheses. 

In this talk we shall deal with only those test problems which involve 
parametric hypotheses. 

Now let X= (X1 , X2 , • • ·, Xn) be a random sample of size n drawn on 
a random variable X whose distribution is indexed by parameter(s) () E 
0, the parameter space. Suppose that we wish to test the null hypothesis 
Ho : () E Wo against the alternative hypothesis Hl : () E wl = n \ Wo. 
That is, when we are given sample observations x = (x1 , x2 , • • ·, xn), we 
want to take one of the following two actions : 

(i) to accept H 0 , or equivalently to reject H 1 ; or 

(ii) to accept H 1 , or equivalently to reject H 0 • 

Let us assume that a certain test procedure or rule is used so that to 
each sample point x in Xx the sample space of X which is usually taken 
to be the n-dimensional Euclidean space R n , one and only one of the 
above two actions is taken. Denote by C the set of those sample points 
which leads to a rejection of H 0 and A = Xx \C. The regions C and A 
are called the critical (or rejection) and the acceptance region of the test 
precedure respectively. Therefore finding a test procedure is equivalent to 
partitioning Xx into two non-overlapping regions C and A. 

Once a decision is made, then we may commit either a Type I error 
or a Type II error which are best illustrated by the following table. 

~n 
e Accept Ho Reject H0 

Ho is true a correct decision Type I Error 

H1 is true Type II Error a correct decision 
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Let us consider now the case where both H 0 and H 1 are simple. Define : 

a= P(Committing a Type I error), 

and 
{3* = P(Committing a Type II error). 

Thus a is the probability of wrongly rejecting H 0 and {3* is the probability 
of wrongly accepting H 0 • Ideally, it is natural to seek a test procedure 
which will give the values of a and {3* as small as possible. Unfortunately 
that is not possible in most cases. Thus, instead, we look for a test proce­
dure which has a given a and a small {3* or equivalently a large {3 = 1-{3*. 
({3 gives the probability of correctly rejecting H 0 .) In the literature, a is 
called the size or the significance level ~nd {3 is called the power of the test 
procedure. The above consideration leads to the following definitions of a 
test. 

Definition 1 : A non-randomized test is a function 

such that 

¢>: Xx --+ {0, 1} 

¢>(x) = { ~ ifx E C 
if x EA. 

Definition 2 : A randomized test is a function 

¢> : Xx --+ [0, 1]. 

• 

For a given randomized test ¢>, if 0 < ¢>(x) = p < 1, then the proba­
bility of rejecting H0 is p. That is, if x 0 is a sample point with ¢>(x0 ) = p, 
then we flip a biased coin with P(head) = p. If a head appears then we 
reject H 0 and accept H 0 if a tail appears. (Sometimes, we consult a table 
of random digits instead of flipping a biased coin.) 

Also we note that 

a= E(</>(X) I Ho) and {3 = E(¢>(X) I H1 ). 
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When H 0 is composite, we define 

a= sup (E(¢(X) 18)) 
9Ewo 

and when H 1 is composite we define 

{3(8) = E(¢(X) 18), for 8 .E w1 • 

For composite H 0 , a is the size of the test ¢and for composite H 1 , {3(8 ) 
is called the power function of the test ¢. The functional value {3(0.1 ) at a 
point 81 E w1 is called the power of the test at 8 = 81 • 

3. Neyman-Pearson Lemma 

This section deals with a test problem whose null hypothesis and 
alternative hypothesis are simple. Let us begin with a definition . 

. 
Definition 3 : A test ¢ is said to be a most powerful {MP} test of size a 
in testing a simple H 0 against a simple H 1 if 

(i) E( ¢(X) I Ho) = a; and 

(ii) E( ¢(X) I H 1 ) ;:::: E( 4>* (X) I H 1 ) for any other test ¢* satisfying (i). 

To every test ¢, we can associate with it a pair ( a,{3) where a and 
{3 are respectively the size and the power of¢. Now let N be the set of 
points (a, {3) such that there exists a test whose associated pair is (a, {3). 
Then it is not difficult to see that 

(i) (0, 0) E N and (1, 1) EN; 

(ii) (a1 ,{31 ) EN and (a2 ,{32 ) EN, and 0 ~ t ~ 1, then 
t(a1 ,{3I) + (1- t)(a2 ,{32 ) EN, (i.e., N is convex.); 

(iii) (a, {3) E N implies (1 - a, 1 - {3) E N. (i.e., N is symmetric with 
respect to the point (i, i ).); a~d 

(iv) N is closed. 
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Graphically, N has the shape of the following diagram. 

The point A (in the preceding diagram) corresponds to aMP test of 
size a 0 • From the diagram it is also clear that if </> is a MP test of size a 
and power (3, then a < (3. 

For a given significance level a, our main objective is to determine a 
MP test of size a. The solution.to this problem is given by the following 

Neyman-Pearson Lemma (see page 118 of Zack [5].) Let / 0 and / 1 

denote the pdf of X under H0 and H1 respectively. Then for testing H0 

against H 1 we have the following: 

(a) Any test of the form 

¢(X)= { ~ 
af /1 (x) > kfo (x) 
if /1 (x) = kfo (x) 
af /1 (x) < kfo (x). 

for some 0 ~ k < oo and 0 ~ 1 ~ 1 is MP relative to all tests of its 
SIZeS. 

(b) (Existence) For testing H0 against H 1 at level of significance a, there 
exists ka, 0 ~ ka < oo and Ia, 0 ~ Ia ~ 1 such that the corresponding 
test of the form in (a) is MP of s.ize a. 

(c) (Uniqueness) If a te6t </>* is MP of size a, then it is of the form in (a), 
except perhaps on the set {xI / 1 (x) = k/0 (x)}; unless there exists a 
test of size smaller than a and power 1. 

For a proof, the readers are ;eferred to pages 119-121 of Zack [5]. 
When X is absolutely continuous, the MP test of size a is a non-randomized 
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one. However, when X is discrete, the MP test of size a is a randomized 
test for most values of a. The Neyman Pearson Lemma is useful not only 
for testing simple H 0 against simple H 1 , it is also very helpful in finding 
a uniformly most powerful (UMP) test (a term to be defined in the next 
section) for testing a simple H0 against a one-sided composite H1 • Many 
examples of finding MP tests using the Neyman Pearson Lemma may be 
found in many books on Elementary Mathematical Statistics. To end this 
section, we give the following 

Example 1 : Let the pdf of a random variable X be given by 

1 
f(x 18) = 0exp{ -x/8}, X ~ 0, 

where 8 > 0., is the mean of X. On the basis of a random sample X, 
obtain the MP test for testing H0 : 8 = 1 against H 1 : 8 = 2 at level of 
significance a, (0 < a < 1). 

' 
Solution : Here 

/ 0 (x) = exp{ -Ex.}, x, ~ 0, i = 1, 2, · • ·, n; 

and 

/I{x)= (i)n exp{-Exd2}, x, ~O,i=1,2, .. ·,n. 

Hence, by applying the Neyman Pearson Lemma, the MP test¢> of size a 
is given by 

{ 

1 if (11 (x)/ fo (x)) ~ k 
¢(x) = 

0 if (fdx)/fo(x)) < k. 

which is equivalent to 

¢(x) = {: 

where k* is a constant to be determined so that 

n 

E(¢>(X) 18 = 1) = P(LX, ~ k*) =a. 
i= 1 
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Now we note when 0 = 1, then 2 I:~= 1 X, has chi-square distribution with 
2n degrees of freedom. Therefore k* = ~X~ (2n), a value which can be 
obtained from Statistical Tables [2]. For example when a= 0.05, n = 5, 
we have x~.os (10) = 18.307. 

4. Uniformly Most Powerful Tests 

When the alternative hypothesis H1 is composite, the notion of a MP 
test does not apply. Instead, we introduce the concept of a uniformly most 
powerful (UMP) test. 

Definition 4: A test ¢> is called a UMP test of size a if 

(i) SUPoewo E(¢>(X) I 0) =a; and 

(ii) for each 0 E w1 , E(¢>(X) I 0) 2: E(¢>* (X) I 0) for any test¢>* satisfying 
(i). 

When Ho is simple and H 1 is composite, we can regard H 1 as a 
union of simple hypotheses. In some cases we can obtain a UMP test 
by applying the Neyman Pearson Lemma. To do this, we consider the 
problem of testing the simple H 0 against a typical simple H; : 0 = 01 

where 01 is a typical member of w1 • If the MP test of size a for testing 
H 0 against H; does not depend on the value of 01 in w1 , then this test is 
MP for testing H 0 against every simple H~ in H 1 • Hence this MP test of 
size a becomes a UMP test of size a for testing H 0 against H 1 • 

Example 2 : Let X be the random variable considered in Example 1. 
Here, we wish to establish a UMP test of size a for testing 

H0 : 0 = 1 against H 1 : 0 > 1. 

Solution : Note that w0 = {1} and w1 = {0 I 0 > 1}. Let 01 be a fixed 
element in w1 • If we consider the problem of testing 

H0 : 0 = 1 against H; : 0 = 01 , 

(here H; is simple), then we can apply the Neyman Pearson Lemma. It 
leads to the following MP test of size a 

¢(x) = {: 
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(See Example 1 for the derivation.) This test ¢ is independent of the value 
of 01 and hence it is the UMP test for testing H 0 against H 1 • 

Remark: 

(1) If H1 in Example 2 is replaced by H2 : 0 E w2 = {0 I 0 > 02}, wh~re 
02 is a given real number> 1, then the UMP test of size a: for testing 

l, H 0 against H2 is the one given in Example 2. 

(2) If H 1 is replaced by H3 : 0 E w3 = {0 I 0 < 03 }, where 03 is a given 
positive number < 1, then the UMP test of size a: for testing H0 

against H3 is 

(3) When H 1 is replaced by H 4 : 0 f. 1(H4 is a two-sided hypothesis), 
then a UMP test of size a: for testing H 0 against H 4 does not exist. 

Consider now the case in which both H0 : 0 E w0 and H 1 : 0 E w1 are 
one-sided composite hypotheses. Assume that for any 00 E w0 and any 
61 E W1 we have 00 < 01. Let 0~ = sup0 Ewo· 0. (In the case 00 > 01, for 
every 00 E w0 and every 01 E w1 , we take 0~ = infoewo 0.) If¢ is the UMP 
test of size a: for testing H; : 0 E 0~ against H 1 , and if 

sup E(¢(X) I 0) =a: 
OEwo 

then ¢ is the UMP test of size a: for testing H 0 against H 1 . 

For additional reading material concerning UMP tests, readers are 
referred to the books by Roussas [3] and Zacks [5]. 

5. Likelihood Ratio Method 

The Neyman Pearson Lemma provides us a method of finding the 
MP test for testing a simple H0 against a sim}>le H 1 • In some cases an 
application of the Lemma will also lead us to obtain the UMP tests. In or­
der to solve test problems which do not admit UMP tests, we introduce in 
this section the likelihood ratio method of constructing tests. The method 
uses a test statistic which is analogous to likelihood ratio / 1 (x) j / 0 (x) used 
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in the Neyman Pearson Lemma. For this reason, some authors refer to 
this method as the generalized likelihood ratio method. When both null 
and alternative hypotheses are simple, this method of constructing tests 
should not be applied, for the resulting test obtained may not be MP. 
Instead, we should apply the Neyman Pearson Lemma. 

Consider the problem of testing H 0 : tJ E w0 against H 1 : tJ E w1 • 

Suppose that n = w0 U w1 contains three or more elements, i.e., at least 
one of H0 and H 1 is composite. The likelihood ratio method uses the 
test statistic, .A(X), usually known as the likelihood ratio statistic, which 
is defined by 

.A(x) = supBEwo f(x I 0). 
supBEO f(xltJ) 

Since Wo c n, it is clear that 0 :::; .A(x) :::; 1 for every sample point X E Xx. 
Note that 

sup f(x I 0) = f(x 18..,) 
8Ewo 

and 
sup f(x I 0) = f(x 18) 
8EO 

where 8.., and 8 are the maximum likelihood estimates of 0 under w0 and 
n respectively. When Ho is not true, the denominator, /(x 18)' in . the 
definition of .A(x) tends to be much larger than the numerator, f(x 18.., ); 
and so the value of .A(x) tends to be small. Thus the method suggests the 
following test: 

¢(x) = { 1, if .A(x) :::; A0 

0, if .A(x) > Ao 

where A0 , 0 < .A0 < 1, is a constant to be determined so that 

sup E( ¢(X) I tJ) = a. 
BE:wo 

This resultant test 4> is called the likelihood ratio test. The value of Ao de­
pends on the size, a. Generally, for any given a, we require the knowledge 
of the distribution of the likelihood ratio statistic under H 0 to determine 
A0 • In most cases the inequality .A(x) :::; .A0 used in defining the likelihood 
ratio test 4> may be reduced to a simpler and equivalent inequality, say 

26 



T(x) ~ T0 , and the distribution of T(X) may be easier to derive than that 
of .X(X) when H0 is true. 

Likelihood ratio tests are not necessarily UMP. But they have some 
desirable properties. (We will not discuss them here.) A possible drawback 
of the likelihood ratio method is, perhaps, that the maximum likelihood 
estimates 0"' and 0 may be difficult to obtain. Another drawback is that 
the distribution of the likelihood ratio statistic .X(X) or its equivalent 
statistic T(X), (needed for the determination of .X0 or T0 ), may not be 
available in the literature and may be difficult to derive. Fortunately, in 
most situations, the asymptotic distribution (i.e., when n tends to infinity) 
of -2ln.X(X) under H0 has been proven to follow a chi-square distribution. 
(This result will be stated without proof as a theorem.) Therefore for 
sufficiently large samples, an approximate value of the cut point .X0 can 
be easily obtained. 

Theorem : For testing H0 : () E w0 against H 1 : () E w1 , let the dimen­
sion of 0 = w0 U w1 be r and the dimension of w0 be r1 ( < r). When H0 

is true, then under certain regularity conditions, the asymptotic distribu­
tion of -2ln.X(X), as n tends to infinity, is distributed like a chi-square 
distribution with r - r 1 degrees of freedom. 

Note: For the regularity conditions about the distribution of the random 
variable X and a proof to the above theorem, the readers are referred to 
Wilks [4]. 

To end the talk we give an example of the determination of the degrees 
of freedom of the asymptotic distribution of -2ln.X(X). 

Example 3 : Let X,, i = 1, 2, · · ·, k(~ 2) be k independent random 
variables. The pdf of each X, is known but depends on the unknown 
mean p,, and variance u[. Consider now the null hypothesis 

Ho : u~ = u; = · · · = uz 
and the alternative hypothesis 

H 1 : not all u; 's are equal. 

Here we have 

0 = { (J.Ll, · · ·, J.Lk, u~, · · ·, uz) I - oo < J.L• < +oo, ui > 0, i = 1, · · ·, k} 
and 

Wo = {(J.Ll, · · ·, J.Lk, u
2

, • • ·, u2) 1-oo < J.L• < +oo, u
2 > 0, i = 1, · · ·, k}. 
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Clearly the dimension of n is 2k (i.e. r = 2k) and the dimension of Wo is 
k + 1, i.e., r 1 = k + 1. Therefore for large samples sizes, the distribution 
of -2ln.A(X) is approximately distributed as the chi-square distribution 
with k- 1 degrees of freedom. 

Remark : H0 in Example 3 may be rewritten as 

H~ "/2 = "/3 = · · · = "'~o = 1, 

where "'i = a;/ a~. Then 

a~ > 0, "ti > 0, i = 1, · · ·, k, ;' = 2, · · ·, k}. 

Let 0 = (J.L 1 , • • · , J.L~o , a~, 1 2 , • • • , I~<). Then to describe H~, we require 
k - 1 components of 0, i.e., 1 2 , • • ·, "/1<, to take fixed values. In general, 
the number of components that take fixed values in describing H 0 is the 
number of degrees of freedom of the asymptotic distribution of -2ln.A(X). 
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