Axioms and algebraic systems^{*}

Leong Yu Kiang Department of Mathematics National University of Singapore

In this talk, we introduce the important concept of a group, mention some equivalent sets of axioms for groups, and point out the relationship between the individual axioms. We also mention briefly the definitions of a ring and a field.

Definition 1. A binary operation on a non-empty set S is a rule which associates to each ordered pair (a, b) of elements of S a unique element, denoted by a * b, in S. The binary relation itself is often denoted by *. It may also be considered as a mapping from $S \times S$ to S, i.e., $*: S \times S \to S$, where $(a, b) \to a * b$, $a, b \in S$.

Example 1. Ordinary addition and multiplication of real numbers are binary operations on the set IR of real numbers. We write a + b, $a \cdot b$ respectively. Ordinary division \div is a binary relation on the set \mathbb{R}^* of non-zero real numbers. We write $a \div b$.

Definition 2. A binary relation * on S is associative if for every a, b, c in S,

$$(a * b) * c = a * (b * c).$$

Example 2. The binary operations + and \cdot on IR (Example 1) are associative. The binary relation \div on IR^{*} (Example 1) is not associative since

$$(1\div2)\div3=rac{1}{6}
eqrac{3}{2}=1\div(2\div3).$$

^{*} Talk given at the Workshop on Algebraic Structures organized by the Singapore Mathematical Society for school teachers on 5 September 1988.

Definition 3. A semi-group is a non-empty set S together with an associative binary operation *, and is denoted by (S, *).

Example 3. The set of $n \times n$ matrices with entries from \mathbb{R} together with matrix multiplication \cdot is a semi-group. This is denoted by $(M_n(\mathbb{R}), \cdot)$. In particular

$$M_2({
m I\!R})=\left\{egin{pmatrix} a&b\c&d\end{pmatrix}:a,b,c,d\in{
m I\!R}
ight\},$$

 $egin{pmatrix} a & b \ c & d \end{pmatrix} \cdot egin{pmatrix} a' & b' \ c' & d' \end{pmatrix} = egin{pmatrix} aa' + bc' & ab' + bd' \ ca' + dc' & cb' + dd' \end{pmatrix}.$

Definition 4. An element e of a semi-group is an *identity* element of S if for all $a \in S$,

$$e * a = a = a * e$$
.

Example 4. Let $(\mathbb{R}, +)$ be the semi-group under ordinary addition +. Then 0 is an identity of $\mathbb{R}: 0 + a = a = a + 0$ for every $a \in \mathbb{R}$.

Example 5. Let (\mathbb{R}, \cdot) be the semi-group under ordinary multiplication. Then 1 is the identity: $1 \cdot a = a = a \cdot 1$ for every $a \in \mathbb{R}$.

Definition 5. A monoid is a semi-group with an identity element.

Example 6. $(M_n(\mathbb{R}), \cdot)$ is a monoid under matrix multiplication with the $n \times n$ identity matrix as an identity element.

Definition 6. An element x of a monoid S is *invertible* if there is an element x' in S such that x' * x = e = x * x', where e is an identity element in S. Such an element x' is called an *inverse* of x.

Example 7. In the monoid $(M_n(\mathbb{R}), \cdot)$, x is invertible if and only if det $x \neq 0$.

Remarks. If a monoid S has an identity element, then it is unique. That is, if $e, e' \in S$ such that for all $a \in S$,

 $e * a = a = a * e, \qquad e' * a = a = a * e',$

then e = e'. For we have e = e * e' = e'.

If an element x of a monoid S is invertible, then x has a unique inverse. That is, if $x_1, x_2 \in S$ and

 $x_1 * x = e = x * x_1, \qquad x_2 * x = e = x * x_2,$

then $x_1 = x_2$. For we have

$$x_1 = x_1 * e = x_1 * (x * x_2) = (x_1 * x) * x_2 = e * x_2 = x_2.$$

Thus we will simply say the identity (element) of S and the inverse of x.

Definition 7. A group is a monoid G in which every element is invertible.

Example 8. The set of $n \times n$ matrices with entries from \mathbb{R} and non-zero determinant is a group under matrix multiplication. This group is denoted by $GL_n(\mathbb{R})$ and called the general linear group of degree n over \mathbb{R} .

Axioms of a group. A group is a non-empty set G with a binary operation * satisfying the following properties.

Axiom 1. (Associativity) The binary operation * is associative.

Axiom 2. (Identity) G has an identity element.

Axiom 3. (Inverse) Every element of G is invertible.

Independence of the group axioms. The above three axioms (1), (2), (3) are independent of each other.

Example 9. $(M_n(\mathbb{R}), \cdot)$ in Example 3 is an example of an algebraic system satisfying Axioms (1), (2) but not (3).

Example 10. Let $S = \{a, b, c\}$ be a set of 3 elements with a binary operation * given by the multiplication table

*	a	b	С
a	a	b	с
b	b	a	с
с	с	b	a

For example, b * c = c, c * b = b. The element a is the identity in S and every element in S has an inverse: a * a = b * b = c * c = a. But * is not associative:

$$b * (c * b) = b * b = a,$$

 $(b * c) * b = c * b = b.$

Hence (S, *) satisfies Axioms (2), (3) but not (1).

Alternative axioms of a group. A group is a non-empty set G with a binary operation * satisfying

Axiom 1. (Associativity) The binary operation * is associative.

Axiom 2'. (Left identity) G has a "left identity" e_l such that $e_l * a = a$ for all a in G.

Axiom 3'. (Left inverse) Each element a in G has a "left inverse" a_l such that $a_l * a = e_l$.

The axioms 2', 3' may be replaced by the following Axioms 2'', 3''.

Axiom 2". (Right identity) G has a "right identity" e_r such that $a * e_r = a$ for all a in G.

Axiom 3". (Right inverse) Each element a in G has a "right inverse" a_r such that $a * a_r = e_r$.

Theorem 1. Axioms 1, 2, 3 are equivalent to Axioms 1, 2', 3', and to Axioms 1, 2'', 3''.

ivity) The binary operation f is a

Proof. Clearly, Axioms 1, 2, 3 imply Axioms 1, 2', 3'. Conversely, assume Axioms 1, 2', 3'. Let a be any element of G. From Axiom 3', we have

$$(a_{l} * a) * a_{l} = e_{l} * a_{l} = a_{l}$$
(1)

(2)

Let b be a left inverse of a_i , i.e., $b * a_i = e_i$. Multiplying (1) by b on the left hand side, and using Axiom 1, we have

 $(b*a_l)*(a*a_l)=b*a_l,$

or

$$e_l * (a * a_l) = e_l,$$

 $a * a_l = e_l$.

by choice of b. Hence by Axiom 2',

Finally, we have

$$a*(a_l*a)=a*e_l,$$

or

$$(a * a_l) * a = a * e_l$$

or, by (2),

$$e_l * a = a * e_l. \tag{3}$$

(2) and (3) show that e_i is the identity of G and a_i is the inverse of a.

We can similarly show that Axioms 1, 2, 3 are equivalent to Axioms 1, $2^{\prime\prime}$, $3^{\prime\prime}$.

Example 11. There is an algebraic system which is not a group but which satisfies Axioms 1, 2' and Axiom 3'': For each element $a \in G$, there is an element $a' \in G$ such that $a * a' = e_i$, where e_i is a left identity of G.

Let $S = \{a, b\}$ be a set of two elements with binary operation * given by

$$a*a=a, \qquad a*b=b, \ b*a=a, \qquad b*b=b.$$

It can be easily checked that * is associative. The element a is a left identity of S. Moreover, the element a is a "right inverse" of both a and b with respect to the left identity a, i.e., a * a = a, b * a = a. However, S has no right identity and hence (S, *) cannot be a group.

Example 12. (\mathbb{R}^*, \div) in Example 1 satisfies Axioms 2', 3' but not Axiom 1. In fact, 1 is a right identity and every element a in \mathbb{R}^* is its own inverse : $a \div 1 = a, a \div a = 1$.

Theorem 2. Let G be a semi-group with binary operation *. Suppose for any a, b in G, the equations a * x = b and y * a = b have solutions with x, y in G. Then (G, *) is a group.

Proof. Let a be any fixed element in G. Then the equation a * x = a has a solution $x = x_0$ say: $a * x_0 = a$. We will show that $b * x_0 = b$ for every b in G. Let b be any element in G. Then the equation y * a = b has a solution $y = y_0$ say. Hence

$$b * x_0 = (y_0 * a) * x_0 = y_0 * (a * x_0) = y_0 * a = b.$$

In other words, x_0 is a right identity of G.

Also, for any b in G, the equation $b * x = x_0$ has a solution x = b' say. That is, b has a "right inverse". Hence (G, *) satisfies Axioms 1, 2", 3" and is a group by Theorem 1.

Example 13. Let S be a set consisting of at least 2 elements and define a binary operation * on S as follows :

a * b = b for all $a, b \in S$.

Then the equation a * x = b has a solution in x, namely x = b, and (S, *) is a semi-group but not a group.

Proof. Associativity of * follows from

$$(a * b) * c = b * c = c,$$

 $a * (b * c) = a * c = c.$

Hence S is a semi-group. Suppose S is a group. Let e be the identity and let a be an element of S with $a \neq e$. (This is possible since S has at least 2 elements.) Then a * e = a, by Axiom 2, and a * e = e, by definition of *. Hence a = e: a contradiction. So (S, *) cannot be a group.

Note. In Example 13, it follows from the definition of * that the equation y * a = b has no solution with y in S if $a \neq b$.

Theorem 3. Let G be a finite semi-group with binary operation *. Suppose G satisfies the following cancellation laws.

(Left cancellation law). If a, x, y are in G such that a * x = a * y, then x = y.

(Right cancellation law). If a, x, y are in G such that x * a = y * a, then x = y.

Theorem 3. Let G be a semi-group with bina

Then (G, *) is a group.

Proof. We will show that for any given a, b in G, the equations a * x = b and y * a = b have solutions in G. Suppose G has exactly n elements :

 $G = \{a_1, \ldots, a_n\}.$

For a given a_i in G, consider the following subset of G :

$$X = \{a_i * a_1, \ldots, a_i * a_n\}.$$

Now X has exactly n elements since $a_i * a_j = a_i * a_k$ implies that $a_j = a_k$ by the left cancellation law. Hence X = G. Thus for any a_j in G, there is some a_r in G such that $a_i * a_r = a_j$.

Similarly, the right cancellation law implies that

 $G = \{a_1 * a_i, \dots, a_n * a_i\}$

and hence $y * a_i = a_j$ has a solution with y in G. Hence, by Theorem 2, (G, *) is a group.

Example 14. Let S be the semi-group given in Example 13. Then S satisfies the left cancellation law. For if a * x = a * y, then by definition of *, we have x = y. However, S does not satisfy the right cancellation law for the equation x * a = y * a holds for all $x, y \in G$. From Example 13, (S, *) is not a group.

Example 15. If the condition of G being finite is removed from Theorem , 3, then G need not be a group. Take G to be the set of positive integers

 $G=\{1,2,3,\ldots,n,\ldots\},$

and let * be ordinary multiplication of integers. Then G is an infinite semi-group satisfying the left and right cancellation laws but G is not a group since every integer greater than 1 has no multiplicative inverse.

Notation. If G is a group with binary operation *, we often write

$$a \cdot b = a * b$$
, or simply, $ab = a * b$.

We also write $a^1 = a$, and for n > 2, $a^n = a^{n-1} \cdot a$. The inverse of a is denoted by a^{-1} , and for n < -1, write m = -n, and $a^n = (a^{-1})^m$. The usual rules hold : For all integers m, n,

$$a^{m+n} = a^m \cdot a^n, \qquad (a^m)^n = a^{mn}.$$

Definition 8. The order of an element a of a group G is the smallest positive integer n for which $a^n = e$, where e is the identity of G. If no such integer exists, the element a is said to be of *infinite* order. The order of a is denoted by o(a).

Example 16. The product of two elements of finite order can be of infinite order. For if

$$a = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix},$$

then

$$ab=\left(egin{array}{cc} -1 & -2\ 0 & -1 \end{array}
ight).$$

Thus o(a) = 2, o(b) = 2, but *ab* is of infinite order.

Theorem 4. Let a be an element of a group G. If $a^k = e$, where e is the identity of G, then o(a) divides k.

Proof. Let n = o(a), and write k = nq + r, where q, r are integers with $0 \le r < n$. Then

$$e=a^k=(a^n)^q.a^r=a^r$$

s we have z = v. Howev.

Since $0 \le r < n$ and n is the smallest positive integer for which $a^n = e$, it follows that k = nq.

Example 17. Let p be a prime, and for $n \ge 1$, define \mathbb{C}_{p^n} to be the multiplicative group of complex p^n -th roots of unity :

$$\mathbb{C}_{p^n}=\{z\in\mathbb{C}:z^{p^n}=1\}.$$

Let $G = \bigcup_{n=1}^{\infty} \mathbb{C}_{p^n}$. Then G is an infinite group in which every element is of finite order.

The above group G is called a quasi-cyclic group.

Definition 9. A group G is abelian if ab = ba for all a, b in G.

Example 18. The following groups are abelian.

- (a) The group Z of integers under ordinary addition,
- (b) The group $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ under addition modulo n,
- (c) The group IR of real numbers under ordinary addition,
- (d) The group C of complex numbers under ordinary addition,
- (e) The group of rotations in the xy-plane about the origin under composition of rotations.

If n > 1, the group $GL_n(\mathbb{R})$ (see Example 8) is non-abelian.

Axioms of a ring. Let R be a non-empty set with two binary operations + and \cdot (called *addition* and *multiplication*). R is a ring if it satisfies the following axioms.

Axiom 1. R is an additive abelian group with respect to +.

Axiom 2. R is a multiplicative semi-group with respect to \cdot .

Axiom 3. (Distributive laws). For all a, b, c in R,

We denote the ring by $(R, +, \cdot)$. The identity of the additive group of R is called the *zero* element of R and is denoted by 0.

Example 19. The following are rings with the usual binary operations.

- (a) \mathbb{Z} : the ring of integers,
- (b) \mathbf{Q} : the ring of rational numbers,
- (c) IR: the ring of real numbers,
- (d) \mathbb{C} : the ring of complex numbers,
- (e) R[x]: the ring of polynomials in the variable x with coefficients from a ring R,
- (f) $M_n(R)$: the ring of $n \times n$ matrices with entries from a ring R.

In (f), two non-zero elements of $M_n(R)$ may have a product equal to 0.

Axioms of a field. Let R be a non-empty set with two binary operations + and \cdot (called *addition* and *multiplication*). R is a *field* if it satisfies the following axioms.

Axiom 1. R is an additive abelian group with respect to +.

Axiom 2. $R - \{0\}$, where 0 is the identity element with respect to +, is a multiplicative abelian group with respect to \cdot .

Axiom 3. (Distributive laws). For all a, b, c in R,

 $a\cdot(b+c)=(a\cdot b)+(a\cdot c),\ (a+b)\cdot c=(a\cdot c)+(b\cdot c).$

A field is a ring $(R, +, \cdot)$ in which $(R - \{0\}, \cdot)$ is an abelian group. Example 20. The following are fields with the usual binary operations.

(a) \mathbb{Q} : the field of rational numbers,

- (b) IR : the field of real numbers,
- (c) \mathbb{C} : the field of complex numbers,

Example 21. Let p be a prime, and let

$$\mathbb{Z}_p = \{0,1,\ldots,p-1\}$$

Define \oplus and \otimes in \mathbb{Z}_p as follows :

 $x \oplus y =$ remainder of the ordinary sum x + y when divided by p,

 $x \otimes y =$ remainder of the ordinary product xy when divided by p.

Then \mathbb{Z}_p is a field of p elements.

Note. A finite field must contain exactly p^n elements where p is a prime and n is a positive integer. Finite fields are called *Galois fields*, named after Evariste Galois (1811-1832) who first introduced them in his groundbreaking work on solubility of equations.

Finite fields have some recent applications to coding theory and cryptography. With the availability of fast-speed computations, these applications are of more than theoretical interest.

The group, $(a, b) \mapsto (a, b) \mapsto (a, b) \mapsto (a, b) \mapsto (a, b)$, $(a, b) \mapsto (a, b)$, $(a, b) \mapsto (a, b)$, $(a, b) \mapsto (a, b$

Example 20. The following are fields with the usual binary operations of a strong of the field of rational numbers,

(c) \mathcal{C} ; the field of complex guinters tradiction a is R . 2 maix A Example 21. Let p_1 be aprime and (given eviteditied) : 6 maix A

{1 - 9 - 12 } = 0 = 0 + (a.c)

Define @ and @ in Rai as follows : . . .

 $x \oplus y = \text{remainder of the ordinary sum } x + y$ when divided by p_i to $i\pi \oplus y = \text{remainder of the ordinary product (y, when divided by <math>p_i$. Then \mathbb{Z}_i is a field of gelicinencial si has \mathbb{R} fo inversion over out belies si